File size: 13,856 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import json
import os
import time
from wandb_gql import gql
import wandb
from wandb import util
from wandb.apis.internal import Api
from wandb.sdk import lib as wandb_lib
from wandb.sdk.data_types.utils import val_to_json
DEEP_SUMMARY_FNAME = "wandb.h5"
H5_TYPES = ("numpy.ndarray", "tensorflow.Tensor", "torch.Tensor")
h5py = util.get_module("h5py")
np = util.get_module("numpy")
class SummarySubDict:
"""Nested dict-like object that proxies read and write operations through a root object.
This lets us do synchronous serialization and lazy loading of large values.
"""
def __init__(self, root=None, path=()):
self._path = tuple(path)
if root is None:
self._root = self
self._json_dict = {}
else:
self._root = root
json_dict = root._json_dict
for k in path:
json_dict = json_dict.get(k, {})
self._json_dict = json_dict
self._dict = {}
# We use this to track which keys the user has set explicitly
# so that we don't automatically overwrite them when we update
# the summary from the history.
self._locked_keys = set()
def __setattr__(self, k, v):
k = k.strip()
if k.startswith("_"):
object.__setattr__(self, k, v)
else:
self[k] = v
def __getattr__(self, k):
k = k.strip()
if k.startswith("_"):
return object.__getattribute__(self, k)
else:
return self[k]
def _root_get(self, path, child_dict):
"""Load a value at a particular path from the root.
This should only be implemented by the "_root" child class.
We pass the child_dict so the item can be set on it or not as
appropriate. Returning None for a nonexistent path wouldn't be
distinguishable from that path being set to the value None.
"""
raise NotImplementedError
def _root_set(self, path, new_keys_values):
"""Set a value at a particular path in the root.
This should only be implemented by the "_root" child class.
"""
raise NotImplementedError
def _root_del(self, path):
"""Delete a value at a particular path in the root.
This should only be implemented by the "_root" child class.
"""
raise NotImplementedError
def _write(self, commit=False):
# should only be implemented on the root summary
raise NotImplementedError
def keys(self):
# _json_dict has the full set of keys, including those for h5 objects
# that may not have been loaded yet
return self._json_dict.keys()
def get(self, k, default=None):
if isinstance(k, str):
k = k.strip()
if k not in self._dict:
self._root._root_get(self._path + (k,), self._dict)
return self._dict.get(k, default)
def items(self):
# not all items may be loaded into self._dict, so we
# have to build the sequence of items from scratch
for k in self.keys():
yield k, self[k]
def __getitem__(self, k):
if isinstance(k, str):
k = k.strip()
self.get(k) # load the value into _dict if it should be there
res = self._dict[k]
return res
def __contains__(self, k):
if isinstance(k, str):
k = k.strip()
return k in self._json_dict
def __setitem__(self, k, v):
if isinstance(k, str):
k = k.strip()
path = self._path
if isinstance(v, dict):
self._dict[k] = SummarySubDict(self._root, path + (k,))
self._root._root_set(path, [(k, {})])
self._dict[k].update(v)
else:
self._dict[k] = v
self._root._root_set(path, [(k, v)])
self._locked_keys.add(k)
self._root._write()
return v
def __delitem__(self, k):
k = k.strip()
del self._dict[k]
self._root._root_del(self._path + (k,))
self._root._write()
def __repr__(self):
# use a copy of _dict, except add placeholders for h5 objects, etc.
# that haven't been loaded yet
repr_dict = dict(self._dict)
for k in self._json_dict:
v = self._json_dict[k]
if (
k not in repr_dict
and isinstance(v, dict)
and v.get("_type") in H5_TYPES
):
# unloaded h5 objects may be very large. use a placeholder for them
# if we haven't already loaded them
repr_dict[k] = "..."
else:
repr_dict[k] = self[k]
return repr(repr_dict)
def update(self, key_vals=None, overwrite=True):
"""Locked keys will be overwritten unless overwrite=False.
Otherwise, written keys will be added to the "locked" list.
"""
if key_vals:
write_items = self._update(key_vals, overwrite)
self._root._root_set(self._path, write_items)
self._root._write(commit=True)
def _update(self, key_vals, overwrite):
if not key_vals:
return
key_vals = {k.strip(): v for k, v in key_vals.items()}
if overwrite:
write_items = list(key_vals.items())
self._locked_keys.update(key_vals.keys())
else:
write_keys = set(key_vals.keys()) - self._locked_keys
write_items = [(k, key_vals[k]) for k in write_keys]
for key, value in write_items:
if isinstance(value, dict):
self._dict[key] = SummarySubDict(self._root, self._path + (key,))
self._dict[key]._update(value, overwrite)
else:
self._dict[key] = value
return write_items
class Summary(SummarySubDict):
"""Store summary metrics (eg. accuracy) during and after a run.
You can manipulate this as if it's a Python dictionary but the keys
get mangled. .strip() is called on them, so spaces at the beginning
and end are removed.
"""
def __init__(self, run, summary=None):
super().__init__()
self._run = run
self._h5_path = os.path.join(self._run.dir, DEEP_SUMMARY_FNAME)
# Lazy load the h5 file
self._h5 = None
# Mirrored version of self._dict with versions of values that get written
# to JSON kept up to date by self._root_set() and self._root_del().
self._json_dict = {}
if summary is not None:
self._json_dict = summary
def _json_get(self, path):
pass
def _root_get(self, path, child_dict):
json_dict = self._json_dict
for key in path[:-1]:
json_dict = json_dict[key]
key = path[-1]
if key in json_dict:
child_dict[key] = self._decode(path, json_dict[key])
def _root_del(self, path):
json_dict = self._json_dict
for key in path[:-1]:
json_dict = json_dict[key]
val = json_dict[path[-1]]
del json_dict[path[-1]]
if isinstance(val, dict) and val.get("_type") in H5_TYPES:
if not h5py:
wandb.termerror("Deleting tensors in summary requires h5py")
else:
self.open_h5()
h5_key = "summary/" + ".".join(path)
del self._h5[h5_key]
self._h5.flush()
def _root_set(self, path, new_keys_values):
json_dict = self._json_dict
for key in path:
json_dict = json_dict[key]
for new_key, new_value in new_keys_values:
json_dict[new_key] = self._encode(new_value, path + (new_key,))
def write_h5(self, path, val):
# ensure the file is open
self.open_h5()
if not self._h5:
wandb.termerror("Storing tensors in summary requires h5py")
else:
try:
del self._h5["summary/" + ".".join(path)]
except KeyError:
pass
self._h5["summary/" + ".".join(path)] = val
self._h5.flush()
def read_h5(self, path, val=None):
# ensure the file is open
self.open_h5()
if not self._h5:
wandb.termerror("Reading tensors from summary requires h5py")
else:
return self._h5.get("summary/" + ".".join(path), val)
def open_h5(self):
if not self._h5 and h5py:
self._h5 = h5py.File(self._h5_path, "a", libver="latest")
def _decode(self, path, json_value):
"""Decode a `dict` encoded by `Summary._encode()`, loading h5 objects.
h5 objects may be very large, so we won't have loaded them automatically.
"""
if isinstance(json_value, dict):
if json_value.get("_type") in H5_TYPES:
return self.read_h5(path, json_value)
elif json_value.get("_type") == "data-frame":
wandb.termerror(
"This data frame was saved via the wandb data API. Contact support@wandb.com for help."
)
return None
# TODO: transform wandb objects and plots
else:
return SummarySubDict(self, path)
else:
return json_value
def _encode(self, value, path_from_root):
"""Normalize, compress, and encode sub-objects for backend storage.
value: Object to encode.
path_from_root: `tuple` of key strings from the top-level summary to the
current `value`.
Returns:
A new tree of dict's with large objects replaced with dictionaries
with "_type" entries that say which type the original data was.
"""
# Constructs a new `dict` tree in `json_value` that discards and/or
# encodes objects that aren't JSON serializable.
if isinstance(value, dict):
json_value = {}
for key, value in value.items():
json_value[key] = self._encode(value, path_from_root + (key,))
return json_value
else:
path = ".".join(path_from_root)
friendly_value, converted = util.json_friendly(
val_to_json(self._run, path, value, namespace="summary")
)
json_value, compressed = util.maybe_compress_summary(
friendly_value, util.get_h5_typename(value)
)
if compressed:
self.write_h5(path_from_root, friendly_value)
return json_value
def download_h5(run_id, entity=None, project=None, out_dir=None):
api = Api()
meta = api.download_url(
project or api.settings("project"),
DEEP_SUMMARY_FNAME,
entity=entity or api.settings("entity"),
run=run_id,
)
if meta and "md5" in meta and meta["md5"] is not None:
# TODO: make this non-blocking
wandb.termlog("Downloading summary data...")
path, res = api.download_write_file(meta, out_dir=out_dir)
return path
def upload_h5(file, run_id, entity=None, project=None):
api = Api()
wandb.termlog("Uploading summary data...")
with open(file, "rb") as f:
api.push(
{os.path.basename(file): f}, run=run_id, project=project, entity=entity
)
class FileSummary(Summary):
def __init__(self, run):
super().__init__(run)
self._fname = os.path.join(run.dir, wandb_lib.filenames.SUMMARY_FNAME)
self.load()
def load(self):
try:
with open(self._fname) as f:
self._json_dict = json.load(f)
except (OSError, ValueError):
self._json_dict = {}
def _write(self, commit=False):
# TODO: we just ignore commit to ensure backward capability
with open(self._fname, "w") as f:
f.write(util.json_dumps_safer(self._json_dict))
f.write("\n")
f.flush()
os.fsync(f.fileno())
if self._h5:
self._h5.close()
self._h5 = None
class HTTPSummary(Summary):
def __init__(self, run, client, summary=None):
super().__init__(run, summary=summary)
self._run = run
self._client = client
self._started = time.time()
def __delitem__(self, key):
if key not in self._json_dict:
raise KeyError(key)
del self._json_dict[key]
def load(self):
pass
def open_h5(self):
if not self._h5 and h5py:
download_h5(
self._run.id,
entity=self._run.entity,
project=self._run.project,
out_dir=self._run.dir,
)
super().open_h5()
def _write(self, commit=False):
mutation = gql(
"""
mutation UpsertBucket( $id: String, $summaryMetrics: JSONString) {
upsertBucket(input: { id: $id, summaryMetrics: $summaryMetrics}) {
bucket { id }
}
}
"""
)
if commit:
if self._h5:
self._h5.close()
self._h5 = None
res = self._client.execute(
mutation,
variable_values={
"id": self._run.storage_id,
"summaryMetrics": util.json_dumps_safer(self._json_dict),
},
)
assert res["upsertBucket"]["bucket"]["id"]
entity, project, run = self._run.path
if (
os.path.exists(self._h5_path)
and os.path.getmtime(self._h5_path) >= self._started
):
upload_h5(self._h5_path, run, entity=entity, project=project)
else:
return False
|