File size: 8,164 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import datetime
import io
import logging
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Sequence

import wandb
from wandb.sdk.data_types import trace_tree
from wandb.sdk.integration_utils.auto_logging import Response

logger = logging.getLogger(__name__)


@dataclass
class UsageMetrics:
    elapsed_time: float = None
    prompt_tokens: int = None
    completion_tokens: int = None
    total_tokens: int = None


@dataclass
class Metrics:
    usage: UsageMetrics = None
    stats: wandb.Table = None
    trace: trace_tree.WBTraceTree = None


usage_metric_keys = {f"usage/{k}" for k in asdict(UsageMetrics())}


class OpenAIRequestResponseResolver:
    def __init__(self):
        self.define_metrics_called = False

    def __call__(
        self,
        args: Sequence[Any],
        kwargs: Dict[str, Any],
        response: Response,
        start_time: float,  # pass to comply with the protocol, but use response["created"] instead
        time_elapsed: float,
    ) -> Optional[Dict[str, Any]]:
        request = kwargs

        if not self.define_metrics_called:
            # define metrics on first call
            for key in usage_metric_keys:
                wandb.define_metric(key, step_metric="_timestamp")
            self.define_metrics_called = True

        try:
            if response.get("object") == "edit":
                return self._resolve_edit(request, response, time_elapsed)
            elif response.get("object") == "text_completion":
                return self._resolve_completion(request, response, time_elapsed)
            elif response.get("object") == "chat.completion":
                return self._resolve_chat_completion(request, response, time_elapsed)
            else:
                # todo: properly treat failed requests
                logger.info(
                    f"Unsupported OpenAI response object: {response.get('object')}"
                )
        except Exception as e:
            logger.warning(f"Failed to resolve request/response: {e}")
        return None

    @staticmethod
    def results_to_trace_tree(
        request: Dict[str, Any],
        response: Response,
        results: List[trace_tree.Result],
        time_elapsed: float,
    ) -> trace_tree.WBTraceTree:
        """Converts the request, response, and results into a trace tree.

        params:
            request: The request dictionary
            response: The response object
            results: A list of results object
            time_elapsed: The time elapsed in seconds
        returns:
            A wandb trace tree object.
        """
        start_time_ms = int(round(response["created"] * 1000))
        end_time_ms = start_time_ms + int(round(time_elapsed * 1000))
        span = trace_tree.Span(
            name=f"{response.get('model', 'openai')}_{response['object']}_{response.get('created')}",
            attributes=dict(response),  # type: ignore
            start_time_ms=start_time_ms,
            end_time_ms=end_time_ms,
            span_kind=trace_tree.SpanKind.LLM,
            results=results,
        )
        model_obj = {"request": request, "response": response, "_kind": "openai"}
        return trace_tree.WBTraceTree(root_span=span, model_dict=model_obj)

    def _resolve_edit(
        self,
        request: Dict[str, Any],
        response: Response,
        time_elapsed: float,
    ) -> Dict[str, Any]:
        """Resolves the request and response objects for `openai.Edit`."""
        request_str = (
            f"\n\n**Instruction**: {request['instruction']}\n\n"
            f"**Input**: {request['input']}\n"
        )
        choices = [
            f"\n\n**Edited**: {choice['text']}\n" for choice in response["choices"]
        ]

        return self._resolve_metrics(
            request=request,
            response=response,
            request_str=request_str,
            choices=choices,
            time_elapsed=time_elapsed,
        )

    def _resolve_completion(
        self,
        request: Dict[str, Any],
        response: Response,
        time_elapsed: float,
    ) -> Dict[str, Any]:
        """Resolves the request and response objects for `openai.Completion`."""
        request_str = f"\n\n**Prompt**: {request['prompt']}\n"
        choices = [
            f"\n\n**Completion**: {choice['text']}\n" for choice in response["choices"]
        ]

        return self._resolve_metrics(
            request=request,
            response=response,
            request_str=request_str,
            choices=choices,
            time_elapsed=time_elapsed,
        )

    def _resolve_chat_completion(
        self,
        request: Dict[str, Any],
        response: Response,
        time_elapsed: float,
    ) -> Dict[str, Any]:
        """Resolves the request and response objects for `openai.Completion`."""
        prompt = io.StringIO()
        for message in request["messages"]:
            prompt.write(f"\n\n**{message['role']}**: {message['content']}\n")
        request_str = prompt.getvalue()

        choices = [
            f"\n\n**{choice['message']['role']}**: {choice['message']['content']}\n"
            for choice in response["choices"]
        ]

        return self._resolve_metrics(
            request=request,
            response=response,
            request_str=request_str,
            choices=choices,
            time_elapsed=time_elapsed,
        )

    def _resolve_metrics(
        self,
        request: Dict[str, Any],
        response: Response,
        request_str: str,
        choices: List[str],
        time_elapsed: float,
    ) -> Dict[str, Any]:
        """Resolves the request and response objects for `openai.Completion`."""
        results = [
            trace_tree.Result(
                inputs={"request": request_str},
                outputs={"response": choice},
            )
            for choice in choices
        ]
        metrics = self._get_metrics_to_log(request, response, results, time_elapsed)
        return self._convert_metrics_to_dict(metrics)

    @staticmethod
    def _get_usage_metrics(response: Response, time_elapsed: float) -> UsageMetrics:
        """Gets the usage stats from the response object."""
        if response.get("usage"):
            usage_stats = UsageMetrics(**response["usage"])
        else:
            usage_stats = UsageMetrics()
        usage_stats.elapsed_time = time_elapsed
        return usage_stats

    def _get_metrics_to_log(
        self,
        request: Dict[str, Any],
        response: Response,
        results: List[Any],
        time_elapsed: float,
    ) -> Metrics:
        model = response.get("model") or request.get("model")
        usage_metrics = self._get_usage_metrics(response, time_elapsed)

        usage = []
        for result in results:
            row = {
                "request": result.inputs["request"],
                "response": result.outputs["response"],
                "model": model,
                "start_time": datetime.datetime.fromtimestamp(response["created"]),
                "end_time": datetime.datetime.fromtimestamp(
                    response["created"] + time_elapsed
                ),
                "request_id": response.get("id", None),
                "api_type": response.get("api_type", "openai"),
                "session_id": wandb.run.id,
            }
            row.update(asdict(usage_metrics))
            usage.append(row)
        usage_table = wandb.Table(
            columns=list(usage[0].keys()),
            data=[(item.values()) for item in usage],
        )

        trace = self.results_to_trace_tree(request, response, results, time_elapsed)

        metrics = Metrics(stats=usage_table, trace=trace, usage=usage_metrics)
        return metrics

    @staticmethod
    def _convert_metrics_to_dict(metrics: Metrics) -> Dict[str, Any]:
        """Converts metrics to a dict."""
        metrics_dict = {
            "stats": metrics.stats,
            "trace": metrics.trace,
        }
        usage_stats = {f"usage/{k}": v for k, v in asdict(metrics.usage).items()}
        metrics_dict.update(usage_stats)
        return metrics_dict