File size: 18,539 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import base64
import datetime
import io
import json
import os
import re
import tempfile
import time
from typing import Any, Dict, List, Optional, Tuple, Union
from packaging.version import parse
import wandb
from wandb import util
from wandb.data_types import Table
from wandb.sdk.lib import telemetry
from wandb.sdk.wandb_run import Run
openai = util.get_module(
name="openai",
required="This integration requires `openai`. To install, please run `pip install openai`",
lazy=False,
)
if parse(openai.__version__) < parse("1.12.0"):
raise wandb.Error(
f"This integration requires openai version 1.12.0 and above. Your current version is {openai.__version__} "
"To fix, please `pip install -U openai`"
)
from openai import OpenAI # noqa: E402
from openai.types.fine_tuning import FineTuningJob # noqa: E402
from openai.types.fine_tuning.fine_tuning_job import ( # noqa: E402
Error,
Hyperparameters,
)
np = util.get_module(
name="numpy",
required="`numpy` not installed >> This integration requires numpy! To fix, please `pip install numpy`",
lazy=False,
)
pd = util.get_module(
name="pandas",
required="`pandas` not installed >> This integration requires pandas! To fix, please `pip install pandas`",
lazy=False,
)
class WandbLogger:
"""Log OpenAI fine-tunes to [Weights & Biases](https://wandb.me/openai-docs)."""
_wandb_api: Optional[wandb.Api] = None
_logged_in: bool = False
openai_client: Optional[OpenAI] = None
_run: Optional[Run] = None
@classmethod
def sync(
cls,
fine_tune_job_id: Optional[str] = None,
openai_client: Optional[OpenAI] = None,
num_fine_tunes: Optional[int] = None,
project: str = "OpenAI-Fine-Tune",
entity: Optional[str] = None,
overwrite: bool = False,
wait_for_job_success: bool = True,
log_datasets: bool = True,
model_artifact_name: str = "model-metadata",
model_artifact_type: str = "model",
**kwargs_wandb_init: Dict[str, Any],
) -> str:
"""Sync fine-tunes to Weights & Biases.
:param fine_tune_job_id: The id of the fine-tune (optional)
:param openai_client: Pass the `OpenAI()` client (optional)
:param num_fine_tunes: Number of most recent fine-tunes to log when an fine_tune_job_id is not provided. By default, every fine-tune is synced.
:param project: Name of the project where you're sending runs. By default, it is "GPT-3".
:param entity: Username or team name where you're sending runs. By default, your default entity is used, which is usually your username.
:param overwrite: Forces logging and overwrite existing wandb run of the same fine-tune.
:param wait_for_job_success: Waits for the fine-tune to be complete and then log metrics to W&B. By default, it is True.
:param model_artifact_name: Name of the model artifact that is logged
:param model_artifact_type: Type of the model artifact that is logged
"""
if openai_client is None:
openai_client = OpenAI()
cls.openai_client = openai_client
if fine_tune_job_id:
wandb.termlog("Retrieving fine-tune job...")
fine_tune = openai_client.fine_tuning.jobs.retrieve(
fine_tuning_job_id=fine_tune_job_id
)
fine_tunes = [fine_tune]
else:
# get list of fine_tune to log
fine_tunes = openai_client.fine_tuning.jobs.list()
if not fine_tunes or fine_tunes.data is None:
wandb.termwarn("No fine-tune has been retrieved")
return
# Select the `num_fine_tunes` from the `fine_tunes.data` list.
# If `num_fine_tunes` is None, it selects all items in the list (from start to end).
# If for example, `num_fine_tunes` is 5, it selects the last 5 items in the list.
# Note that the last items in the list are the latest fine-tune jobs.
fine_tunes = fine_tunes.data[
-num_fine_tunes if num_fine_tunes is not None else None :
]
# log starting from oldest fine_tune
show_individual_warnings = (
fine_tune_job_id is not None or num_fine_tunes is not None
)
fine_tune_logged = []
for fine_tune in fine_tunes:
fine_tune_id = fine_tune.id
# check run with the given `fine_tune_id` has not been logged already
run_path = f"{project}/{fine_tune_id}"
if entity is not None:
run_path = f"{entity}/{run_path}"
wandb_run = cls._get_wandb_run(run_path)
if wandb_run:
wandb_status = wandb_run.summary.get("status")
if show_individual_warnings:
if wandb_status == "succeeded" and not overwrite:
wandb.termwarn(
f"Fine-tune {fine_tune_id} has already been logged successfully at {wandb_run.url}. "
"Use `overwrite=True` if you want to overwrite previous run"
)
elif wandb_status != "succeeded" or overwrite:
if wandb_status != "succeeded":
wandb.termwarn(
f"A run for fine-tune {fine_tune_id} was previously created but didn't end successfully"
)
wandb.termlog(
f"A new wandb run will be created for fine-tune {fine_tune_id} and previous run will be overwritten"
)
overwrite = True
if wandb_status == "succeeded" and not overwrite:
return
# check if the user has not created a wandb run externally
if wandb.run is None:
cls._run = wandb.init(
job_type="fine-tune",
project=project,
entity=entity,
name=fine_tune_id,
id=fine_tune_id,
**kwargs_wandb_init,
)
else:
# if a run exits - created externally
cls._run = wandb.run
if wait_for_job_success:
fine_tune = cls._wait_for_job_success(fine_tune)
cls._log_fine_tune(
fine_tune,
project,
entity,
overwrite,
show_individual_warnings,
log_datasets,
model_artifact_name,
model_artifact_type,
**kwargs_wandb_init,
)
if not show_individual_warnings and not any(fine_tune_logged):
wandb.termwarn("No new successful fine-tunes were found")
return "π wandb sync completed successfully"
@classmethod
def _wait_for_job_success(cls, fine_tune: FineTuningJob) -> FineTuningJob:
wandb.termlog("Waiting for the OpenAI fine-tuning job to finish training...")
wandb.termlog(
"To avoid blocking, you can call `WandbLogger.sync` with `wait_for_job_success=False` after OpenAI training completes."
)
while True:
if fine_tune.status == "succeeded":
wandb.termlog(
"Fine-tuning finished, logging metrics, model metadata, and run metadata to Weights & Biases"
)
return fine_tune
if fine_tune.status == "failed":
wandb.termwarn(
f"Fine-tune {fine_tune.id} has failed and will not be logged"
)
return fine_tune
if fine_tune.status == "cancelled":
wandb.termwarn(
f"Fine-tune {fine_tune.id} was cancelled and will not be logged"
)
return fine_tune
time.sleep(10)
fine_tune = cls.openai_client.fine_tuning.jobs.retrieve(
fine_tuning_job_id=fine_tune.id
)
@classmethod
def _log_fine_tune(
cls,
fine_tune: FineTuningJob,
project: str,
entity: Optional[str],
overwrite: bool,
show_individual_warnings: bool,
log_datasets: bool,
model_artifact_name: str,
model_artifact_type: str,
**kwargs_wandb_init: Dict[str, Any],
):
fine_tune_id = fine_tune.id
status = fine_tune.status
with telemetry.context(run=cls._run) as tel:
tel.feature.openai_finetuning = True
# check run completed successfully
if status != "succeeded":
if show_individual_warnings:
wandb.termwarn(
f'Fine-tune {fine_tune_id} has the status "{status}" and will not be logged'
)
return
# check results are present
try:
results_id = fine_tune.result_files[0]
try:
encoded_results = cls.openai_client.files.content(
file_id=results_id
).read()
results = base64.b64decode(encoded_results).decode("utf-8")
except Exception:
# attempt to read as text, works for older jobs
results = cls.openai_client.files.content(file_id=results_id).text
except openai.NotFoundError:
if show_individual_warnings:
wandb.termwarn(
f"Fine-tune {fine_tune_id} has no results and will not be logged"
)
return
# update the config
cls._run.config.update(cls._get_config(fine_tune))
# log results
df_results = pd.read_csv(io.StringIO(results))
for _, row in df_results.iterrows():
metrics = {k: v for k, v in row.items() if not np.isnan(v)}
step = metrics.pop("step")
if step is not None:
step = int(step)
cls._run.log(metrics, step=step)
fine_tuned_model = fine_tune.fine_tuned_model
if fine_tuned_model is not None:
cls._run.summary["fine_tuned_model"] = fine_tuned_model
# training/validation files and fine-tune details
cls._log_artifacts(
fine_tune,
project,
entity,
log_datasets,
overwrite,
model_artifact_name,
model_artifact_type,
)
# mark run as complete
cls._run.summary["status"] = "succeeded"
cls._run.finish()
return True
@classmethod
def _ensure_logged_in(cls):
if not cls._logged_in:
if wandb.login():
cls._logged_in = True
else:
raise Exception(
"It appears you are not currently logged in to Weights & Biases. "
"Please run `wandb login` in your terminal or `wandb.login()` in a notebook."
"When prompted, you can obtain your API key by visiting wandb.ai/authorize."
)
@classmethod
def _get_wandb_run(cls, run_path: str):
cls._ensure_logged_in()
try:
if cls._wandb_api is None:
cls._wandb_api = wandb.Api()
return cls._wandb_api.run(run_path)
except Exception:
return None
@classmethod
def _get_wandb_artifact(cls, artifact_path: str):
cls._ensure_logged_in()
try:
if cls._wandb_api is None:
cls._wandb_api = wandb.Api()
return cls._wandb_api.artifact(artifact_path)
except Exception:
return None
@classmethod
def _get_config(cls, fine_tune: FineTuningJob) -> Dict[str, Any]:
config = dict(fine_tune)
config["result_files"] = config["result_files"][0]
if config.get("created_at"):
config["created_at"] = datetime.datetime.fromtimestamp(
config["created_at"]
).strftime("%Y-%m-%d %H:%M:%S")
if config.get("finished_at"):
config["finished_at"] = datetime.datetime.fromtimestamp(
config["finished_at"]
).strftime("%Y-%m-%d %H:%M:%S")
if config.get("hyperparameters"):
config["hyperparameters"] = cls.sanitize(config["hyperparameters"])
if config.get("error"):
config["error"] = cls.sanitize(config["error"])
return config
@classmethod
def _unpack_hyperparameters(cls, hyperparameters: Hyperparameters):
# `Hyperparameters` object is not unpacking properly using `vars` or `__dict__`,
# vars(hyperparameters) return {n_epochs: n} only.
hyperparams = {}
try:
hyperparams["n_epochs"] = hyperparameters.n_epochs
hyperparams["batch_size"] = hyperparameters.batch_size
hyperparams["learning_rate_multiplier"] = (
hyperparameters.learning_rate_multiplier
)
except Exception:
# If unpacking fails, return the object to be logged as config
return None
return hyperparams
@staticmethod
def sanitize(input: Any) -> Union[Dict, List, str]:
valid_types = [bool, int, float, str]
if isinstance(input, (Hyperparameters, Error)):
return dict(input)
if isinstance(input, dict):
return {
k: v if type(v) in valid_types else str(v) for k, v in input.items()
}
elif isinstance(input, list):
return [v if type(v) in valid_types else str(v) for v in input]
else:
return str(input)
@classmethod
def _log_artifacts(
cls,
fine_tune: FineTuningJob,
project: str,
entity: Optional[str],
log_datasets: bool,
overwrite: bool,
model_artifact_name: str,
model_artifact_type: str,
) -> None:
if log_datasets:
wandb.termlog("Logging training/validation files...")
# training/validation files
training_file = fine_tune.training_file if fine_tune.training_file else None
validation_file = (
fine_tune.validation_file if fine_tune.validation_file else None
)
for file, prefix, artifact_type in (
(training_file, "train", "training_files"),
(validation_file, "valid", "validation_files"),
):
if file is not None:
cls._log_artifact_inputs(
file, prefix, artifact_type, project, entity, overwrite
)
# fine-tune details
fine_tune_id = fine_tune.id
artifact = wandb.Artifact(
model_artifact_name,
type=model_artifact_type,
metadata=dict(fine_tune),
)
with artifact.new_file("model_metadata.json", mode="w", encoding="utf-8") as f:
dict_fine_tune = dict(fine_tune)
dict_fine_tune["hyperparameters"] = cls.sanitize(
dict_fine_tune["hyperparameters"]
)
dict_fine_tune["error"] = cls.sanitize(dict_fine_tune["error"])
dict_fine_tune = cls.sanitize(dict_fine_tune)
json.dump(dict_fine_tune, f, indent=2)
cls._run.log_artifact(
artifact,
aliases=["latest", fine_tune_id],
)
@classmethod
def _log_artifact_inputs(
cls,
file_id: Optional[str],
prefix: str,
artifact_type: str,
project: str,
entity: Optional[str],
overwrite: bool,
) -> None:
# get input artifact
artifact_name = f"{prefix}-{file_id}"
# sanitize name to valid wandb artifact name
artifact_name = re.sub(r"[^a-zA-Z0-9_\-.]", "_", artifact_name)
artifact_alias = file_id
artifact_path = f"{project}/{artifact_name}:{artifact_alias}"
if entity is not None:
artifact_path = f"{entity}/{artifact_path}"
artifact = cls._get_wandb_artifact(artifact_path)
# create artifact if file not already logged previously
if artifact is None or overwrite:
# get file content
try:
file_content = cls.openai_client.files.content(file_id=file_id)
except openai.NotFoundError:
wandb.termerror(
f"File {file_id} could not be retrieved. Make sure you have OpenAI permissions to download training/validation files"
)
return
artifact = wandb.Artifact(artifact_name, type=artifact_type)
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(file_content.content)
tmp_file_path = tmp_file.name
artifact.add_file(tmp_file_path, file_id)
os.unlink(tmp_file_path)
# create a Table
try:
table, n_items = cls._make_table(file_content.text)
# Add table to the artifact.
artifact.add(table, file_id)
# Add the same table to the workspace.
cls._run.log({f"{prefix}_data": table})
# Update the run config and artifact metadata
cls._run.config.update({f"n_{prefix}": n_items})
artifact.metadata["items"] = n_items
except Exception as e:
wandb.termerror(
f"Issue saving {file_id} as a Table to Artifacts, exception:\n '{e}'"
)
else:
# log number of items
cls._run.config.update({f"n_{prefix}": artifact.metadata.get("items")})
cls._run.use_artifact(artifact, aliases=["latest", artifact_alias])
@classmethod
def _make_table(cls, file_content: str) -> Tuple[Table, int]:
table = wandb.Table(columns=["role: system", "role: user", "role: assistant"])
df = pd.read_json(io.StringIO(file_content), orient="records", lines=True)
for _idx, message in df.iterrows():
messages = message.messages
assert len(messages) == 3
table.add_data(
messages[0]["content"],
messages[1]["content"],
messages[2]["content"],
)
return table, len(df)
|