File size: 27,251 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
import os
from argparse import Namespace
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Mapping, Optional, Union
from packaging import version
from typing_extensions import override
import wandb
from wandb import Artifact
from wandb.sdk.lib import telemetry
from wandb.sdk.wandb_run import Run
try:
import lightning
import torch.nn as nn
from lightning.fabric.loggers.logger import Logger, rank_zero_experiment
from lightning.fabric.utilities.exceptions import MisconfigurationException
from lightning.fabric.utilities.logger import (
_add_prefix,
_convert_params,
_sanitize_callable_params,
)
from lightning.fabric.utilities.rank_zero import rank_zero_only, rank_zero_warn
from lightning.fabric.utilities.types import _PATH
from torch import Tensor
from torch.nn import Module
if version.parse(lightning.__version__) > version.parse("2.1.3"):
wandb.termwarn(
"""This integration is tested and supported for lightning Fabric 2.1.3.
Please report any issues to https://github.com/wandb/wandb/issues with the tag `lightning-fabric`.""",
repeat=False,
)
if TYPE_CHECKING:
from lightning.pytorch.callbacks.model_checkpoint import ModelCheckpoint
except ImportError as e:
wandb.Error(e)
class WandbLogger(Logger):
r"""Log using `Weights and Biases <https://docs.wandb.ai/integrations/lightning>`_.
**Installation and set-up**
Install with pip:
.. code-block:: bash
pip install wandb
Create a `WandbLogger` instance:
.. code-block:: python
from lightning.fabric.loggers import WandbLogger
wandb_logger = WandbLogger(project="MNIST")
Pass the logger instance to the `Trainer`:
.. code-block:: python
trainer = Trainer(logger=wandb_logger)
A new W&B run will be created when training starts if you have not created one manually before with `wandb.init()`.
**Log metrics**
Log from :class:`~lightning.pytorch.core.LightningModule`:
.. code-block:: python
class LitModule(LightningModule):
def training_step(self, batch, batch_idx):
self.log("train/loss", loss)
Use directly wandb module:
.. code-block:: python
wandb.log({"train/loss": loss})
**Log hyper-parameters**
Save :class:`~lightning.pytorch.core.LightningModule` parameters:
.. code-block:: python
class LitModule(LightningModule):
def __init__(self, *args, **kwarg):
self.save_hyperparameters()
Add other config parameters:
.. code-block:: python
# add one parameter
wandb_logger.experiment.config["key"] = value
# add multiple parameters
wandb_logger.experiment.config.update({key1: val1, key2: val2})
# use directly wandb module
wandb.config["key"] = value
wandb.config.update()
**Log gradients, parameters and model topology**
Call the `watch` method for automatically tracking gradients:
.. code-block:: python
# log gradients and model topology
wandb_logger.watch(model)
# log gradients, parameter histogram and model topology
wandb_logger.watch(model, log="all")
# change log frequency of gradients and parameters (100 steps by default)
wandb_logger.watch(model, log_freq=500)
# do not log graph (in case of errors)
wandb_logger.watch(model, log_graph=False)
The `watch` method adds hooks to the model which can be removed at the end of training:
.. code-block:: python
wandb_logger.experiment.unwatch(model)
**Log model checkpoints**
Log model checkpoints at the end of training:
.. code-block:: python
wandb_logger = WandbLogger(log_model=True)
Log model checkpoints as they get created during training:
.. code-block:: python
wandb_logger = WandbLogger(log_model="all")
Custom checkpointing can be set up through :class:`~lightning.pytorch.callbacks.ModelCheckpoint`:
.. code-block:: python
# log model only if `val_accuracy` increases
wandb_logger = WandbLogger(log_model="all")
checkpoint_callback = ModelCheckpoint(monitor="val_accuracy", mode="max")
trainer = Trainer(logger=wandb_logger, callbacks=[checkpoint_callback])
`latest` and `best` aliases are automatically set to easily retrieve a model checkpoint:
.. code-block:: python
# reference can be retrieved in artifacts panel
# "VERSION" can be a version (ex: "v2") or an alias ("latest or "best")
checkpoint_reference = "USER/PROJECT/MODEL-RUN_ID:VERSION"
# download checkpoint locally (if not already cached)
run = wandb.init(project="MNIST")
artifact = run.use_artifact(checkpoint_reference, type="model")
artifact_dir = artifact.download()
# load checkpoint
model = LitModule.load_from_checkpoint(Path(artifact_dir) / "model.ckpt")
**Log media**
Log text with:
.. code-block:: python
# using columns and data
columns = ["input", "label", "prediction"]
data = [["cheese", "english", "english"], ["fromage", "french", "spanish"]]
wandb_logger.log_text(key="samples", columns=columns, data=data)
# using a pandas DataFrame
wandb_logger.log_text(key="samples", dataframe=my_dataframe)
Log images with:
.. code-block:: python
# using tensors, numpy arrays or PIL images
wandb_logger.log_image(key="samples", images=[img1, img2])
# adding captions
wandb_logger.log_image(
key="samples", images=[img1, img2], caption=["tree", "person"]
)
# using file path
wandb_logger.log_image(key="samples", images=["img_1.jpg", "img_2.jpg"])
More arguments can be passed for logging segmentation masks and bounding boxes. Refer to
`Image Overlays documentation <https://docs.wandb.ai/guides/track/log/media#image-overlays>`_.
**Log Tables**
`W&B Tables <https://docs.wandb.ai/guides/tables/visualize-tables>`_ can be used to log,
query and analyze tabular data.
They support any type of media (text, image, video, audio, molecule, html, etc) and are great for storing,
understanding and sharing any form of data, from datasets to model predictions.
.. code-block:: python
columns = ["caption", "image", "sound"]
data = [
["cheese", wandb.Image(img_1), wandb.Audio(snd_1)],
["wine", wandb.Image(img_2), wandb.Audio(snd_2)],
]
wandb_logger.log_table(key="samples", columns=columns, data=data)
**Downloading and Using Artifacts**
To download an artifact without starting a run, call the ``download_artifact``
function on the class:
.. code-block:: python
artifact_dir = wandb_logger.download_artifact(artifact="path/to/artifact")
To download an artifact and link it to an ongoing run call the ``download_artifact``
function on the logger instance:
.. code-block:: python
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
self.logger.download_artifact(artifact="path/to/artifact")
To link an artifact from a previous run you can use ``use_artifact`` function:
.. code-block:: python
wandb_logger.use_artifact(artifact="path/to/artifact")
See Also:
- `Demo in Google Colab <http://wandb.me/lightning>`__ with hyperparameter search and model logging
- `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__
Args:
name: Display name for the run.
save_dir: Path where data is saved.
version: Sets the version, mainly used to resume a previous run.
offline: Run offline (data can be streamed later to wandb servers).
dir: Same as save_dir.
id: Same as version.
anonymous: Enables or explicitly disables anonymous logging.
project: The name of the project to which this run will belong. If not set, the environment variable
`WANDB_PROJECT` will be used as a fallback. If both are not set, it defaults to ``'lightning_logs'``.
log_model: Log checkpoints created by :class:`~lightning.pytorch.callbacks.ModelCheckpoint`
as W&B artifacts. `latest` and `best` aliases are automatically set.
* if ``log_model == 'all'``, checkpoints are logged during training.
* if ``log_model == True``, checkpoints are logged at the end of training, except when
`~lightning.pytorch.callbacks.ModelCheckpoint.save_top_k` ``== -1``
which also logs every checkpoint during training.
* if ``log_model == False`` (default), no checkpoint is logged.
prefix: A string to put at the beginning of metric keys.
experiment: WandB experiment object. Automatically set when creating a run.
checkpoint_name: Name of the model checkpoint artifact being logged.
log_checkpoint_on: When to log model checkpoints as W&B artifacts. Only used if ``log_model`` is ``True``.
Options: ``"success"``, ``"all"``. Default: ``"success"``.
\**kwargs: Arguments passed to :func:`wandb.init` like `entity`, `group`, `tags`, etc.
Raises:
ModuleNotFoundError:
If required WandB package is not installed on the device.
MisconfigurationException:
If both ``log_model`` and ``offline`` is set to ``True``.
"""
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
name: Optional[str] = None,
save_dir: _PATH = ".",
version: Optional[str] = None,
offline: bool = False,
dir: Optional[_PATH] = None,
id: Optional[str] = None,
anonymous: Optional[bool] = None,
project: Optional[str] = None,
log_model: Union[Literal["all"], bool] = False,
experiment: Optional["Run"] = None,
prefix: str = "",
checkpoint_name: Optional[str] = None,
log_checkpoint_on: Union[Literal["success"], Literal["all"]] = "success",
**kwargs: Any,
) -> None:
if offline and log_model:
raise MisconfigurationException(
f"Providing log_model={log_model} and offline={offline} is an invalid configuration"
" since model checkpoints cannot be uploaded in offline mode.\n"
"Hint: Set `offline=False` to log your model."
)
super().__init__()
self._offline = offline
self._log_model = log_model
self._prefix = prefix
self._experiment = experiment
self._logged_model_time: Dict[str, float] = {}
self._checkpoint_callback: Optional[ModelCheckpoint] = None
# paths are processed as strings
if save_dir is not None:
save_dir = os.fspath(save_dir)
elif dir is not None:
dir = os.fspath(dir)
project = project or os.environ.get("WANDB_PROJECT", "lightning_fabric_logs")
# set wandb init arguments
self._wandb_init: Dict[str, Any] = {
"name": name,
"project": project,
"dir": save_dir or dir,
"id": version or id,
"resume": "allow",
"anonymous": ("allow" if anonymous else None),
}
self._wandb_init.update(**kwargs)
# extract parameters
self._project = self._wandb_init.get("project")
self._save_dir = self._wandb_init.get("dir")
self._name = self._wandb_init.get("name")
self._id = self._wandb_init.get("id")
self._checkpoint_name = checkpoint_name
self._log_checkpoint_on = log_checkpoint_on
def __getstate__(self) -> Dict[str, Any]:
# Hack: If the 'spawn' launch method is used, the logger will get pickled and this `__getstate__` gets called.
# We create an experiment here in the main process, and attach to it in the worker process.
# Using wandb-service, we persist the same experiment even if multiple `Trainer.fit/test/validate` calls
# are made.
_ = self.experiment
state = self.__dict__.copy()
# args needed to reload correct experiment
if self._experiment is not None:
state["_id"] = getattr(self._experiment, "id", None)
state["_attach_id"] = getattr(self._experiment, "_attach_id", None)
state["_name"] = self._experiment.name
# cannot be pickled
state["_experiment"] = None
return state
@property
@rank_zero_experiment
def experiment(self) -> "Run":
r"""Actual wandb object.
To use wandb features in your :class:`~lightning.pytorch.core.LightningModule`, do the
following.
Example::
.. code-block:: python
self.logger.experiment.some_wandb_function()
"""
if self._experiment is None:
if self._offline:
os.environ["WANDB_MODE"] = "dryrun"
attach_id = getattr(self, "_attach_id", None)
if wandb.run is not None:
# wandb process already created in this instance
rank_zero_warn(
"There is a wandb run already in progress and newly created instances of `WandbLogger` will reuse"
" this run. If this is not desired, call `wandb.finish()` before instantiating `WandbLogger`."
)
self._experiment = wandb.run
elif attach_id is not None and hasattr(wandb, "_attach"):
# attach to wandb process referenced
self._experiment = wandb._attach(attach_id)
else:
# create new wandb process
self._experiment = wandb.init(**self._wandb_init)
# define default x-axis
if isinstance(self._experiment, Run) and getattr(
self._experiment, "define_metric", None
):
self._experiment.define_metric("trainer/global_step")
self._experiment.define_metric(
"*", step_metric="trainer/global_step", step_sync=True
)
self._experiment._label(repo="lightning_fabric_logger") # pylint: disable=protected-access
with telemetry.context(run=self._experiment) as tel:
tel.feature.lightning_fabric_logger = True
return self._experiment
def watch(
self,
model: nn.Module,
log: str = "gradients",
log_freq: int = 100,
log_graph: bool = True,
) -> None:
self.experiment.watch(model, log=log, log_freq=log_freq, log_graph=log_graph)
@override
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: # type: ignore[override]
params = _convert_params(params)
params = _sanitize_callable_params(params)
self.experiment.config.update(params, allow_val_change=True)
@override
@rank_zero_only
def log_metrics(
self, metrics: Mapping[str, float], step: Optional[int] = None
) -> None:
assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
if step is not None:
self.experiment.log(dict(metrics, **{"trainer/global_step": step}))
else:
self.experiment.log(metrics)
@rank_zero_only
def log_table(
self,
key: str,
columns: Optional[List[str]] = None,
data: Optional[List[List[Any]]] = None,
dataframe: Any = None,
step: Optional[int] = None,
) -> None:
"""Log a Table containing any object type (text, image, audio, video, molecule, html, etc).
Can be defined either with `columns` and `data` or with `dataframe`.
"""
metrics = {key: wandb.Table(columns=columns, data=data, dataframe=dataframe)}
self.log_metrics(metrics, step)
@rank_zero_only
def log_text(
self,
key: str,
columns: Optional[List[str]] = None,
data: Optional[List[List[str]]] = None,
dataframe: Any = None,
step: Optional[int] = None,
) -> None:
"""Log text as a Table.
Can be defined either with `columns` and `data` or with `dataframe`.
"""
self.log_table(key, columns, data, dataframe, step)
@rank_zero_only
def log_html(
self, key: str, htmls: List[Any], step: Optional[int] = None, **kwargs: Any
) -> None:
"""Log html files.
Optional kwargs are lists passed to each html (ex: inject).
"""
if not isinstance(htmls, list):
raise TypeError(f'Expected a list as "htmls", found {type(htmls)}')
n = len(htmls)
for k, v in kwargs.items():
if len(v) != n:
raise ValueError(f"Expected {n} items but only found {len(v)} for {k}")
kwarg_list = [{k: kwargs[k][i] for k in kwargs} for i in range(n)]
metrics = {
key: [wandb.Html(html, **kwarg) for html, kwarg in zip(htmls, kwarg_list)]
}
self.log_metrics(metrics, step) # type: ignore[arg-type]
@rank_zero_only
def log_image(
self, key: str, images: List[Any], step: Optional[int] = None, **kwargs: Any
) -> None:
"""Log images (tensors, numpy arrays, PIL Images or file paths).
Optional kwargs are lists passed to each image (ex: caption, masks, boxes).
"""
if not isinstance(images, list):
raise TypeError(f'Expected a list as "images", found {type(images)}')
n = len(images)
for k, v in kwargs.items():
if len(v) != n:
raise ValueError(f"Expected {n} items but only found {len(v)} for {k}")
kwarg_list = [{k: kwargs[k][i] for k in kwargs} for i in range(n)]
metrics = {
key: [wandb.Image(img, **kwarg) for img, kwarg in zip(images, kwarg_list)]
}
self.log_metrics(metrics, step) # type: ignore[arg-type]
@rank_zero_only
def log_audio(
self, key: str, audios: List[Any], step: Optional[int] = None, **kwargs: Any
) -> None:
r"""Log audios (numpy arrays, or file paths).
Args:
key: The key to be used for logging the audio files
audios: The list of audio file paths, or numpy arrays to be logged
step: The step number to be used for logging the audio files
\**kwargs: Optional kwargs are lists passed to each ``Wandb.Audio`` instance (ex: caption, sample_rate).
Optional kwargs are lists passed to each audio (ex: caption, sample_rate).
"""
if not isinstance(audios, list):
raise TypeError(f'Expected a list as "audios", found {type(audios)}')
n = len(audios)
for k, v in kwargs.items():
if len(v) != n:
raise ValueError(f"Expected {n} items but only found {len(v)} for {k}")
kwarg_list = [{k: kwargs[k][i] for k in kwargs} for i in range(n)]
metrics = {
key: [
wandb.Audio(audio, **kwarg) for audio, kwarg in zip(audios, kwarg_list)
]
}
self.log_metrics(metrics, step) # type: ignore[arg-type]
@rank_zero_only
def log_video(
self, key: str, videos: List[Any], step: Optional[int] = None, **kwargs: Any
) -> None:
"""Log videos (numpy arrays, or file paths).
Args:
key: The key to be used for logging the video files
videos: The list of video file paths, or numpy arrays to be logged
step: The step number to be used for logging the video files
**kwargs: Optional kwargs are lists passed to each Wandb.Video instance (ex: caption, fps, format).
Optional kwargs are lists passed to each video (ex: caption, fps, format).
"""
if not isinstance(videos, list):
raise TypeError(f'Expected a list as "videos", found {type(videos)}')
n = len(videos)
for k, v in kwargs.items():
if len(v) != n:
raise ValueError(f"Expected {n} items but only found {len(v)} for {k}")
kwarg_list = [{k: kwargs[k][i] for k in kwargs} for i in range(n)]
metrics = {
key: [
wandb.Video(video, **kwarg) for video, kwarg in zip(videos, kwarg_list)
]
}
self.log_metrics(metrics, step) # type: ignore[arg-type]
@property
@override
def save_dir(self) -> Optional[str]:
"""Gets the save directory.
Returns:
The path to the save directory.
"""
return self._save_dir
@property
@override
def name(self) -> Optional[str]:
"""The project name of this experiment.
Returns:
The name of the project the current experiment belongs to. This name is not the same as `wandb.Run`'s
name. To access wandb's internal experiment name, use ``logger.experiment.name`` instead.
"""
return self._project
@property
@override
def version(self) -> Optional[str]:
"""Gets the id of the experiment.
Returns:
The id of the experiment if the experiment exists else the id given to the constructor.
"""
# don't create an experiment if we don't have one
return self._experiment.id if self._experiment else self._id
@property
def log_dir(self) -> Optional[str]:
"""Gets the save directory.
Returns:
The path to the save directory.
"""
return self.save_dir
@property
def group_separator(self) -> str:
"""Return the default separator used by the logger to group the data into subfolders."""
return self.LOGGER_JOIN_CHAR
@property
def root_dir(self) -> Optional[str]:
"""Return the root directory.
Return the root directory where all versions of an experiment get saved, or `None` if the logger does not
save data locally.
"""
return self.save_dir.parent if self.save_dir else None
def log_graph(self, model: Module, input_array: Optional[Tensor] = None) -> None:
"""Record model graph.
Args:
model: the model with an implementation of ``forward``.
input_array: input passes to `model.forward`
This is a noop function and does not perform any operation.
"""
return
@override
def after_save_checkpoint(self, checkpoint_callback: "ModelCheckpoint") -> None:
# log checkpoints as artifacts
if (
self._log_model == "all"
or self._log_model is True
and checkpoint_callback.save_top_k == -1
):
# TODO: Replace with new Fabric Checkpoints system
self._scan_and_log_pytorch_checkpoints(checkpoint_callback)
elif self._log_model is True:
self._checkpoint_callback = checkpoint_callback
@staticmethod
@rank_zero_only
def download_artifact(
artifact: str,
save_dir: Optional[_PATH] = None,
artifact_type: Optional[str] = None,
use_artifact: Optional[bool] = True,
) -> str:
"""Downloads an artifact from the wandb server.
Args:
artifact: The path of the artifact to download.
save_dir: The directory to save the artifact to.
artifact_type: The type of artifact to download.
use_artifact: Whether to add an edge between the artifact graph.
Returns:
The path to the downloaded artifact.
"""
if wandb.run is not None and use_artifact:
artifact = wandb.run.use_artifact(artifact)
else:
api = wandb.Api()
artifact = api.artifact(artifact, type=artifact_type)
save_dir = None if save_dir is None else os.fspath(save_dir)
return artifact.download(root=save_dir)
def use_artifact(
self, artifact: str, artifact_type: Optional[str] = None
) -> "Artifact":
"""Logs to the wandb dashboard that the mentioned artifact is used by the run.
Args:
artifact: The path of the artifact.
artifact_type: The type of artifact being used.
Returns:
wandb Artifact object for the artifact.
"""
return self.experiment.use_artifact(artifact, type=artifact_type)
@override
@rank_zero_only
def save(self) -> None:
"""Save log data."""
self.experiment.log({}, commit=True)
@override
@rank_zero_only
def finalize(self, status: str) -> None:
if self._log_checkpoint_on == "success" and status != "success":
# Currently, checkpoints only get logged on success
return
# log checkpoints as artifacts
if (
self._checkpoint_callback
and self._experiment is not None
and self._log_checkpoint_on in ["success", "all"]
):
self._scan_and_log_pytorch_checkpoints(self._checkpoint_callback)
def _scan_and_log_pytorch_checkpoints(
self, checkpoint_callback: "ModelCheckpoint"
) -> None:
from lightning.pytorch.loggers.utilities import _scan_checkpoints
# get checkpoints to be saved with associated score
checkpoints = _scan_checkpoints(checkpoint_callback, self._logged_model_time)
# log iteratively all new checkpoints
for t, p, s, _ in checkpoints:
metadata = {
"score": s.item() if isinstance(s, Tensor) else s,
"original_filename": Path(p).name,
checkpoint_callback.__class__.__name__: {
k: getattr(checkpoint_callback, k)
for k in [
"monitor",
"mode",
"save_last",
"save_top_k",
"save_weights_only",
"_every_n_train_steps",
]
# ensure it does not break if `ModelCheckpoint` args change
if hasattr(checkpoint_callback, k)
},
}
if not self._checkpoint_name:
self._checkpoint_name = f"model-{self.experiment.id}"
artifact = wandb.Artifact(
name=self._checkpoint_name, type="model", metadata=metadata
)
artifact.add_file(p, name="model.ckpt")
aliases = (
["latest", "best"]
if p == checkpoint_callback.best_model_path
else ["latest"]
)
self.experiment.log_model(artifact, aliases=aliases)
# remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name)
self._logged_model_time[p] = t
|