File size: 44,131 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 |
"""keras init."""
import logging
import operator
import os
import shutil
import sys
from itertools import chain
import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K # noqa: N812
import wandb
from wandb.proto.wandb_deprecated import Deprecated
from wandb.sdk.integration_utils.data_logging import ValidationDataLogger
from wandb.sdk.lib.deprecate import deprecate
from wandb.util import add_import_hook
def _check_keras_version():
from keras import __version__ as keras_version
from packaging.version import parse
if parse(keras_version) < parse("2.4.0"):
wandb.termwarn(
f"Keras version {keras_version} is not fully supported. Required keras >= 2.4.0"
)
def _can_compute_flops() -> bool:
"""FLOPS computation is restricted to TF 2.x as it requires tf.compat.v1."""
from packaging.version import parse
if parse(tf.__version__) >= parse("2.0.0"):
return True
return False
if "keras" in sys.modules:
_check_keras_version()
else:
add_import_hook("keras", _check_keras_version)
logger = logging.getLogger(__name__)
def is_dataset(data):
dataset_ops = wandb.util.get_module("tensorflow.python.data.ops.dataset_ops")
if dataset_ops and hasattr(dataset_ops, "DatasetV2"):
dataset_types = (dataset_ops.DatasetV2,)
if hasattr(dataset_ops, "DatasetV1"):
dataset_types = dataset_types + (dataset_ops.DatasetV1,)
return isinstance(data, dataset_types)
else:
return False
def is_generator_like(data):
# Checks if data is a generator, Sequence, or Iterator.
types = (tf.keras.utils.Sequence,)
iterator_ops = wandb.util.get_module("tensorflow.python.data.ops.iterator_ops")
if iterator_ops:
types = types + (iterator_ops.Iterator,)
# EagerIterator was in tensorflow < 2
if hasattr(iterator_ops, "EagerIterator"):
types = types + (iterator_ops.EagerIterator,)
elif hasattr(iterator_ops, "IteratorV2"):
types = types + (iterator_ops.IteratorV2,)
return hasattr(data, "next") or hasattr(data, "__next__") or isinstance(data, types)
def patch_tf_keras(): # noqa: C901
from packaging.version import parse
from tensorflow.python.eager import context
if parse("2.6.0") <= parse(tf.__version__) < parse("2.13.0"):
keras_engine = "keras.engine"
try:
from keras.engine import training
from keras.engine import training_arrays_v1 as training_arrays
from keras.engine import training_generator_v1 as training_generator
except (ImportError, AttributeError):
wandb.termerror("Unable to patch Tensorflow/Keras")
logger.exception("exception while trying to patch_tf_keras")
return
else:
keras_engine = "tensorflow.python.keras.engine"
from tensorflow.python.keras.engine import training
try:
from tensorflow.python.keras.engine import (
training_arrays_v1 as training_arrays,
)
from tensorflow.python.keras.engine import (
training_generator_v1 as training_generator,
)
except (ImportError, AttributeError):
try:
from tensorflow.python.keras.engine import (
training_arrays,
training_generator,
)
except (ImportError, AttributeError):
wandb.termerror("Unable to patch Tensorflow/Keras")
logger.exception("exception while trying to patch_tf_keras")
return
# Tensorflow 2.1
training_v2_1 = wandb.util.get_module("tensorflow.python.keras.engine.training_v2")
# Tensorflow 2.2
training_v2_2 = wandb.util.get_module(f"{keras_engine}.training_v1")
if training_v2_1:
old_v2 = training_v2_1.Loop.fit
elif training_v2_2:
old_v2 = training.Model.fit
old_arrays = training_arrays.fit_loop
old_generator = training_generator.fit_generator
def set_wandb_attrs(cbk, val_data):
if isinstance(cbk, WandbCallback):
if is_generator_like(val_data):
cbk.generator = val_data
elif is_dataset(val_data):
if context.executing_eagerly():
cbk.generator = iter(val_data)
else:
wandb.termwarn(
"Found a validation dataset in graph mode, can't patch Keras."
)
elif isinstance(val_data, tuple) and isinstance(val_data[0], tf.Tensor):
# Graph mode dataset generator
def gen():
while True:
yield K.get_session().run(val_data)
cbk.generator = gen()
else:
cbk.validation_data = val_data
def new_arrays(*args, **kwargs):
cbks = kwargs.get("callbacks", [])
val_inputs = kwargs.get("val_inputs")
val_targets = kwargs.get("val_targets")
# TODO: these could be generators, why index 0?
if val_inputs and val_targets:
for cbk in cbks:
set_wandb_attrs(cbk, (val_inputs[0], val_targets[0]))
return old_arrays(*args, **kwargs)
def new_generator(*args, **kwargs):
cbks = kwargs.get("callbacks", [])
val_data = kwargs.get("validation_data")
if val_data:
for cbk in cbks:
set_wandb_attrs(cbk, val_data)
return old_generator(*args, **kwargs)
def new_v2(*args, **kwargs):
cbks = kwargs.get("callbacks", [])
val_data = kwargs.get("validation_data")
if val_data:
for cbk in cbks:
set_wandb_attrs(cbk, val_data)
return old_v2(*args, **kwargs)
training_arrays.orig_fit_loop = old_arrays
training_arrays.fit_loop = new_arrays
training_generator.orig_fit_generator = old_generator
training_generator.fit_generator = new_generator
wandb.patched["keras"].append([f"{keras_engine}.training_arrays", "fit_loop"])
wandb.patched["keras"].append(
[f"{keras_engine}.training_generator", "fit_generator"]
)
if training_v2_1:
training_v2_1.Loop.fit = new_v2
wandb.patched["keras"].append(
["tensorflow.python.keras.engine.training_v2.Loop", "fit"]
)
elif training_v2_2:
training.Model.fit = new_v2
wandb.patched["keras"].append([f"{keras_engine}.training.Model", "fit"])
def _array_has_dtype(array):
return hasattr(array, "dtype")
def _update_if_numeric(metrics, key, values):
if not _array_has_dtype(values):
_warn_not_logging(key)
return
if not is_numeric_array(values):
_warn_not_logging_non_numeric(key)
return
metrics[key] = wandb.Histogram(values)
def is_numeric_array(array):
return np.issubdtype(array.dtype, np.number)
def _warn_not_logging_non_numeric(name):
wandb.termwarn(
f"Non-numeric values found in layer: {name}, not logging this layer",
repeat=False,
)
def _warn_not_logging(name):
wandb.termwarn(
f"Layer {name} has undetermined datatype not logging this layer",
repeat=False,
)
tf_logger = tf.get_logger()
patch_tf_keras()
### For gradient logging ###
def _get_custom_optimizer_parent_class():
from packaging.version import parse
if parse(tf.__version__) >= parse("2.9.0"):
custom_optimizer_parent_class = tf.keras.optimizers.legacy.Optimizer
else:
custom_optimizer_parent_class = tf.keras.optimizers.Optimizer
return custom_optimizer_parent_class
_custom_optimizer_parent_class = _get_custom_optimizer_parent_class()
class _CustomOptimizer(_custom_optimizer_parent_class):
def __init__(self):
super().__init__(name="CustomOptimizer")
self._resource_apply_dense = tf.function(self._resource_apply_dense)
self._resource_apply_sparse = tf.function(self._resource_apply_sparse)
def _resource_apply_dense(self, grad, var):
var.assign(grad)
# this needs to be implemented to prevent a NotImplementedError when
# using Lookup layers.
def _resource_apply_sparse(self, grad, var, indices):
pass
def get_config(self):
return super().get_config()
class _GradAccumulatorCallback(tf.keras.callbacks.Callback):
"""Accumulates gradients during a fit() call when used in conjunction with the CustomOptimizer above."""
def set_model(self, model):
super().set_model(model)
self.og_weights = model.get_weights()
self.grads = [np.zeros(tuple(w.shape)) for w in model.trainable_weights]
def on_batch_end(self, batch, logs=None):
for g, w in zip(self.grads, self.model.trainable_weights):
g += w.numpy()
self.model.set_weights(self.og_weights)
def get_grads(self):
return [g.copy() for g in self.grads]
###
class WandbCallback(tf.keras.callbacks.Callback):
"""`WandbCallback` automatically integrates keras with wandb.
Example:
```python
model.fit(
X_train,
y_train,
validation_data=(X_test, y_test),
callbacks=[WandbCallback()],
)
```
`WandbCallback` will automatically log history data from any
metrics collected by keras: loss and anything passed into `keras_model.compile()`.
`WandbCallback` will set summary metrics for the run associated with the "best" training
step, where "best" is defined by the `monitor` and `mode` attributes. This defaults
to the epoch with the minimum `val_loss`. `WandbCallback` will by default save the model
associated with the best `epoch`.
`WandbCallback` can optionally log gradient and parameter histograms.
`WandbCallback` can optionally save training and validation data for wandb to visualize.
Args:
monitor: (str) name of metric to monitor. Defaults to `val_loss`.
mode: (str) one of {`auto`, `min`, `max`}.
`min` - save model when monitor is minimized
`max` - save model when monitor is maximized
`auto` - try to guess when to save the model (default).
save_model:
True - save a model when monitor beats all previous epochs
False - don't save models
save_graph: (boolean) if True save model graph to wandb (default to True).
save_weights_only: (boolean) if True, then only the model's weights will be
saved (`model.save_weights(filepath)`), else the full model
is saved (`model.save(filepath)`).
log_weights: (boolean) if True save histograms of the model's layer's weights.
log_gradients: (boolean) if True log histograms of the training gradients
training_data: (tuple) Same format `(X,y)` as passed to `model.fit`. This is needed
for calculating gradients - this is mandatory if `log_gradients` is `True`.
validation_data: (tuple) Same format `(X,y)` as passed to `model.fit`. A set of data
for wandb to visualize. If this is set, every epoch, wandb will
make a small number of predictions and save the results for later visualization. In case
you are working with image data, please also set `input_type` and `output_type` in order
to log correctly.
generator: (generator) a generator that returns validation data for wandb to visualize. This
generator should return tuples `(X,y)`. Either `validate_data` or generator should
be set for wandb to visualize specific data examples. In case you are working with image data,
please also set `input_type` and `output_type` in order to log correctly.
validation_steps: (int) if `validation_data` is a generator, how many
steps to run the generator for the full validation set.
labels: (list) If you are visualizing your data with wandb this list of labels
will convert numeric output to understandable string if you are building a
multiclass classifier. If you are making a binary classifier you can pass in
a list of two labels ["label for false", "label for true"]. If `validate_data`
and generator are both false, this won't do anything.
predictions: (int) the number of predictions to make for visualization each epoch, max
is 100.
input_type: (string) type of the model input to help visualization. can be one of:
(`image`, `images`, `segmentation_mask`, `auto`).
output_type: (string) type of the model output to help visualization. can be one of:
(`image`, `images`, `segmentation_mask`, `label`).
log_evaluation: (boolean) if True, save a Table containing validation data and the
model's predictions at each epoch. See `validation_indexes`,
`validation_row_processor`, and `output_row_processor` for additional details.
class_colors: ([float, float, float]) if the input or output is a segmentation mask,
an array containing an rgb tuple (range 0-1) for each class.
log_batch_frequency: (integer) if None, callback will log every epoch.
If set to integer, callback will log training metrics every `log_batch_frequency`
batches.
log_best_prefix: (string) if None, no extra summary metrics will be saved.
If set to a string, the monitored metric and epoch will be prepended with this value
and stored as summary metrics.
validation_indexes: ([wandb.data_types._TableLinkMixin]) an ordered list of index keys to associate
with each validation example. If log_evaluation is True and `validation_indexes` is provided,
then a Table of validation data will not be created and instead each prediction will
be associated with the row represented by the `TableLinkMixin`. The most common way to obtain
such keys are is use `Table.get_index()` which will return a list of row keys.
validation_row_processor: (Callable) a function to apply to the validation data, commonly used to visualize the data.
The function will receive an `ndx` (int) and a `row` (dict). If your model has a single input,
then `row["input"]` will be the input data for the row. Else, it will be keyed based on the name of the
input slot. If your fit function takes a single target, then `row["target"]` will be the target data for the row. Else,
it will be keyed based on the name of the output slots. For example, if your input data is a single ndarray,
but you wish to visualize the data as an Image, then you can provide `lambda ndx, row: {"img": wandb.Image(row["input"])}`
as the processor. Ignored if log_evaluation is False or `validation_indexes` are present.
output_row_processor: (Callable) same as `validation_row_processor`, but applied to the model's output. `row["output"]` will contain
the results of the model output.
infer_missing_processors: (bool) Determines if `validation_row_processor` and `output_row_processor`
should be inferred if missing. Defaults to True. If `labels` are provided, we will attempt to infer classification-type
processors where appropriate.
log_evaluation_frequency: (int) Determines the frequency which evaluation results will be logged. Default 0 (only at the end of training).
Set to 1 to log every epoch, 2 to log every other epoch, and so on. Has no effect when log_evaluation is False.
compute_flops: (bool) Compute the FLOPs of your Keras Sequential or Functional model in GigaFLOPs unit.
"""
def __init__(
self,
monitor="val_loss",
verbose=0,
mode="auto",
save_weights_only=False,
log_weights=False,
log_gradients=False,
save_model=True,
training_data=None,
validation_data=None,
labels=None,
predictions=36,
generator=None,
input_type=None,
output_type=None,
log_evaluation=False,
validation_steps=None,
class_colors=None,
log_batch_frequency=None,
log_best_prefix="best_",
save_graph=True,
validation_indexes=None,
validation_row_processor=None,
prediction_row_processor=None,
infer_missing_processors=True,
log_evaluation_frequency=0,
compute_flops=False,
**kwargs,
):
if wandb.run is None:
raise wandb.Error("You must call wandb.init() before WandbCallback()")
deprecate(
field_name=Deprecated.keras_callback,
warning_message=(
"WandbCallback is deprecated and will be removed in a future release. "
"Please use the WandbMetricsLogger, WandbModelCheckpoint, and WandbEvalCallback "
"callbacks instead. "
"See https://docs.wandb.ai/guides/integrations/keras for more information."
),
)
with wandb.wandb_lib.telemetry.context(run=wandb.run) as tel:
tel.feature.keras = True
self.validation_data = None
# This is kept around for legacy reasons
if validation_data is not None:
if is_generator_like(validation_data):
generator = validation_data
else:
self.validation_data = validation_data
if labels is None:
labels = []
self.labels = labels
self.predictions = min(predictions, 100)
self.monitor = monitor
self.verbose = verbose
self.save_weights_only = save_weights_only
self.save_graph = save_graph
wandb.save("model-best.h5")
self.filepath = os.path.join(wandb.run.dir, "model-best.h5")
self.save_model = save_model
if save_model:
deprecate(
field_name=Deprecated.keras_callback__save_model,
warning_message=(
"The save_model argument by default saves the model in the HDF5 format that cannot save "
"custom objects like subclassed models and custom layers. This behavior will be deprecated "
"in a future release in favor of the SavedModel format. Meanwhile, the HDF5 model is saved "
"as W&B files and the SavedModel as W&B Artifacts."
),
)
self.save_model_as_artifact = True
self.log_weights = log_weights
self.log_gradients = log_gradients
self.training_data = training_data
self.generator = generator
self._graph_rendered = False
data_type = kwargs.get("data_type", None)
if data_type is not None:
deprecate(
field_name=Deprecated.keras_callback__data_type,
warning_message=(
"The data_type argument of wandb.keras.WandbCallback is deprecated "
"and will be removed in a future release. Please use input_type instead.\n"
"Setting input_type = data_type."
),
)
input_type = data_type
self.input_type = input_type
self.output_type = output_type
self.log_evaluation = log_evaluation
self.validation_steps = validation_steps
self.class_colors = np.array(class_colors) if class_colors is not None else None
self.log_batch_frequency = log_batch_frequency
self.log_best_prefix = log_best_prefix
self.compute_flops = compute_flops
self._prediction_batch_size = None
if self.log_gradients:
if int(tf.__version__.split(".")[0]) < 2:
raise Exception("Gradient logging requires tensorflow 2.0 or higher.")
if self.training_data is None:
raise ValueError(
"training_data argument is required for gradient logging."
)
if isinstance(self.training_data, (list, tuple)):
if len(self.training_data) != 2:
raise ValueError("training data must be a tuple of length two")
self._training_data_x, self._training_data_y = self.training_data
else:
self._training_data_x = (
self.training_data
) # generator, tf.data.Dataset etc
self._training_data_y = None
# From Keras
if mode not in ["auto", "min", "max"]:
wandb.termwarn(
f"WandbCallback mode {mode} is unknown, fallback to auto mode."
)
mode = "auto"
if mode == "min":
self.monitor_op = operator.lt
self.best = float("inf")
elif mode == "max":
self.monitor_op = operator.gt
self.best = float("-inf")
else:
if "acc" in self.monitor or self.monitor.startswith("fmeasure"):
self.monitor_op = operator.gt
self.best = float("-inf")
else:
self.monitor_op = operator.lt
self.best = float("inf")
# Get the previous best metric for resumed runs
previous_best = wandb.run.summary.get(f"{self.log_best_prefix}{self.monitor}")
if previous_best is not None:
self.best = previous_best
self._validation_data_logger = None
self._validation_indexes = validation_indexes
self._validation_row_processor = validation_row_processor
self._prediction_row_processor = prediction_row_processor
self._infer_missing_processors = infer_missing_processors
self._log_evaluation_frequency = log_evaluation_frequency
self._model_trained_since_last_eval = False
def _build_grad_accumulator_model(self):
inputs = self.model.inputs
outputs = self.model(inputs)
grad_acc_model = tf.keras.models.Model(inputs, outputs)
grad_acc_model.compile(loss=self.model.loss, optimizer=_CustomOptimizer())
# make sure magic doesn't think this is a user model
grad_acc_model._wandb_internal_model = True
self._grad_accumulator_model = grad_acc_model
self._grad_accumulator_callback = _GradAccumulatorCallback()
def _implements_train_batch_hooks(self):
return self.log_batch_frequency is not None
def _implements_test_batch_hooks(self):
return self.log_batch_frequency is not None
def _implements_predict_batch_hooks(self):
return self.log_batch_frequency is not None
def set_params(self, params):
self.params = params
def set_model(self, model):
super().set_model(model)
if self.input_type == "auto" and len(model.inputs) == 1:
self.input_type = wandb.util.guess_data_type(
model.inputs[0].shape, risky=True
)
if self.input_type and self.output_type is None and len(model.outputs) == 1:
self.output_type = wandb.util.guess_data_type(model.outputs[0].shape)
if self.log_gradients:
self._build_grad_accumulator_model()
def _attempt_evaluation_log(self, commit=True):
if self.log_evaluation and self._validation_data_logger:
try:
if not self.model:
wandb.termwarn("WandbCallback unable to read model from trainer")
else:
self._validation_data_logger.log_predictions(
predictions=self._validation_data_logger.make_predictions(
self.model.predict
),
commit=commit,
)
self._model_trained_since_last_eval = False
except Exception as e:
wandb.termwarn("Error during prediction logging for epoch: " + str(e))
def on_epoch_end(self, epoch, logs=None):
if logs is None:
logs = {}
if self.log_weights:
wandb.log(self._log_weights(), commit=False)
if self.log_gradients:
wandb.log(self._log_gradients(), commit=False)
if self.input_type in (
"image",
"images",
"segmentation_mask",
) or self.output_type in ("image", "images", "segmentation_mask"):
if self.generator:
self.validation_data = next(self.generator)
if self.validation_data is None:
wandb.termwarn(
"No validation_data set, pass a generator to the callback."
)
elif self.validation_data and len(self.validation_data) > 0:
wandb.log(
{"examples": self._log_images(num_images=self.predictions)},
commit=False,
)
if (
self._log_evaluation_frequency > 0
and epoch % self._log_evaluation_frequency == 0
):
self._attempt_evaluation_log(commit=False)
wandb.log({"epoch": epoch}, commit=False)
wandb.log(logs, commit=True)
self.current = logs.get(self.monitor)
if self.current and self.monitor_op(self.current, self.best):
if self.log_best_prefix:
wandb.run.summary[f"{self.log_best_prefix}{self.monitor}"] = (
self.current
)
wandb.run.summary["{}{}".format(self.log_best_prefix, "epoch")] = epoch
if self.verbose and not self.save_model:
wandb.termlog(
f"Epoch {epoch:05d}: {self.monitor} improved from {self.best:.5f} to {self.current:.5f}"
)
if self.save_model:
self._save_model(epoch)
if self.save_model and self.save_model_as_artifact:
self._save_model_as_artifact(epoch)
self.best = self.current
# This is what keras used pre tensorflow.keras
def on_batch_begin(self, batch, logs=None):
pass
# This is what keras used pre tensorflow.keras
def on_batch_end(self, batch, logs=None):
if self.save_graph and not self._graph_rendered:
# Couldn't do this in train_begin because keras may still not be built
wandb.run.summary["graph"] = wandb.Graph.from_keras(self.model)
self._graph_rendered = True
if self.log_batch_frequency and batch % self.log_batch_frequency == 0:
wandb.log(logs, commit=True)
def on_train_batch_begin(self, batch, logs=None):
self._model_trained_since_last_eval = True
def on_train_batch_end(self, batch, logs=None):
if self.save_graph and not self._graph_rendered:
# Couldn't do this in train_begin because keras may still not be built
wandb.run.summary["graph"] = wandb.Graph.from_keras(self.model)
self._graph_rendered = True
if self.log_batch_frequency and batch % self.log_batch_frequency == 0:
wandb.log(logs, commit=True)
def on_test_begin(self, logs=None):
pass
def on_test_end(self, logs=None):
pass
def on_test_batch_begin(self, batch, logs=None):
pass
def on_test_batch_end(self, batch, logs=None):
pass
def on_train_begin(self, logs=None):
if self.log_evaluation:
try:
validation_data = None
if self.validation_data:
validation_data = self.validation_data
elif self.generator:
if not self.validation_steps:
wandb.termwarn(
"WandbCallback is unable to log validation data. "
"When using a generator for validation_data, you must pass validation_steps"
)
else:
x = None
y_true = None
for _ in range(self.validation_steps):
bx, by_true = next(self.generator)
if x is None:
x, y_true = bx, by_true
else:
x, y_true = (
np.append(x, bx, axis=0),
np.append(y_true, by_true, axis=0),
)
validation_data = (x, y_true)
else:
wandb.termwarn(
"WandbCallback is unable to read validation_data from trainer "
"and therefore cannot log validation data. Ensure Keras is properly "
"patched by calling `from wandb.keras import WandbCallback` at the top of your script."
)
if validation_data:
self._validation_data_logger = ValidationDataLogger(
inputs=validation_data[0],
targets=validation_data[1],
indexes=self._validation_indexes,
validation_row_processor=self._validation_row_processor,
prediction_row_processor=self._prediction_row_processor,
class_labels=self.labels,
infer_missing_processors=self._infer_missing_processors,
)
except Exception as e:
wandb.termwarn(
"Error initializing ValidationDataLogger in WandbCallback. "
f"Skipping logging validation data. Error: {str(e)}"
)
if self.compute_flops and _can_compute_flops():
try:
wandb.summary["GFLOPs"] = self.get_flops()
except Exception:
logger.exception("Error computing FLOPs")
wandb.termwarn("Unable to compute FLOPs for this model.")
def on_train_end(self, logs=None):
if self._model_trained_since_last_eval:
self._attempt_evaluation_log()
def on_predict_begin(self, logs=None):
pass
def on_predict_end(self, logs=None):
pass
def on_predict_batch_begin(self, batch, logs=None):
pass
def on_predict_batch_end(self, batch, logs=None):
pass
def _logits_to_captions(self, logits):
if logits[0].shape[-1] == 1:
# Scalar output from the model
# TODO: handle validation_y
if len(self.labels) == 2:
# User has named true and false
captions = [
self.labels[1] if logits[0] > 0.5 else self.labels[0]
for logit in logits
]
else:
if len(self.labels) != 0:
wandb.termwarn(
"keras model is producing a single output, "
'so labels should be a length two array: ["False label", "True label"].'
)
captions = [logit[0] for logit in logits]
else:
# Vector output from the model
# TODO: handle validation_y
labels = np.argmax(np.stack(logits), axis=1)
if len(self.labels) > 0:
# User has named the categories in self.labels
captions = []
for label in labels:
try:
captions.append(self.labels[label])
except IndexError:
captions.append(label)
else:
captions = labels
return captions
def _masks_to_pixels(self, masks):
# if its a binary mask, just return it as grayscale instead of picking the argmax
if len(masks[0].shape) == 2 or masks[0].shape[-1] == 1:
return masks
class_colors = (
self.class_colors
if self.class_colors is not None
else np.array(wandb.util.class_colors(masks[0].shape[2]))
)
imgs = class_colors[np.argmax(masks, axis=-1)]
return imgs
def _log_images(self, num_images=36):
validation_X = self.validation_data[0] # noqa: N806
validation_y = self.validation_data[1]
validation_length = len(validation_X)
if validation_length > num_images:
# pick some data at random
indices = np.random.choice(validation_length, num_images, replace=False)
else:
indices = range(validation_length)
test_data = []
test_output = []
for i in indices:
test_example = validation_X[i]
test_data.append(test_example)
test_output.append(validation_y[i])
if self.model.stateful:
predictions = self.model.predict(np.stack(test_data), batch_size=1)
self.model.reset_states()
else:
predictions = self.model.predict(
np.stack(test_data), batch_size=self._prediction_batch_size
)
if len(predictions) != len(test_data):
self._prediction_batch_size = 1
predictions = self.model.predict(
np.stack(test_data), batch_size=self._prediction_batch_size
)
if self.input_type == "label":
if self.output_type in ("image", "images", "segmentation_mask"):
captions = self._logits_to_captions(test_data)
output_image_data = (
self._masks_to_pixels(predictions)
if self.output_type == "segmentation_mask"
else predictions
)
reference_image_data = (
self._masks_to_pixels(test_output)
if self.output_type == "segmentation_mask"
else test_output
)
output_images = [
wandb.Image(data, caption=captions[i], grouping=2)
for i, data in enumerate(output_image_data)
]
reference_images = [
wandb.Image(data, caption=captions[i])
for i, data in enumerate(reference_image_data)
]
return list(chain.from_iterable(zip(output_images, reference_images)))
elif self.input_type in ("image", "images", "segmentation_mask"):
input_image_data = (
self._masks_to_pixels(test_data)
if self.input_type == "segmentation_mask"
else test_data
)
if self.output_type == "label":
# we just use the predicted label as the caption for now
captions = self._logits_to_captions(predictions)
return [
wandb.Image(data, caption=captions[i])
for i, data in enumerate(test_data)
]
elif self.output_type in ("image", "images", "segmentation_mask"):
output_image_data = (
self._masks_to_pixels(predictions)
if self.output_type == "segmentation_mask"
else predictions
)
reference_image_data = (
self._masks_to_pixels(test_output)
if self.output_type == "segmentation_mask"
else test_output
)
input_images = [
wandb.Image(data, grouping=3)
for i, data in enumerate(input_image_data)
]
output_images = [
wandb.Image(data) for i, data in enumerate(output_image_data)
]
reference_images = [
wandb.Image(data) for i, data in enumerate(reference_image_data)
]
return list(
chain.from_iterable(
zip(input_images, output_images, reference_images)
)
)
else:
# unknown output, just log the input images
return [wandb.Image(img) for img in test_data]
elif self.output_type in ("image", "images", "segmentation_mask"):
# unknown input, just log the predicted and reference outputs without captions
output_image_data = (
self._masks_to_pixels(predictions)
if self.output_type == "segmentation_mask"
else predictions
)
reference_image_data = (
self._masks_to_pixels(test_output)
if self.output_type == "segmentation_mask"
else test_output
)
output_images = [
wandb.Image(data, grouping=2)
for i, data in enumerate(output_image_data)
]
reference_images = [
wandb.Image(data) for i, data in enumerate(reference_image_data)
]
return list(chain.from_iterable(zip(output_images, reference_images)))
def _log_weights(self):
metrics = {}
for layer in self.model.layers:
weights = layer.get_weights()
if len(weights) == 1:
_update_if_numeric(
metrics, "parameters/" + layer.name + ".weights", weights[0]
)
elif len(weights) == 2:
_update_if_numeric(
metrics, "parameters/" + layer.name + ".weights", weights[0]
)
_update_if_numeric(
metrics, "parameters/" + layer.name + ".bias", weights[1]
)
return metrics
def _log_gradients(self):
# Suppress callback warnings grad accumulator
og_level = tf_logger.level
tf_logger.setLevel("ERROR")
self._grad_accumulator_model.fit(
self._training_data_x,
self._training_data_y,
verbose=0,
callbacks=[self._grad_accumulator_callback],
)
tf_logger.setLevel(og_level)
weights = self.model.trainable_weights
grads = self._grad_accumulator_callback.grads
metrics = {}
for weight, grad in zip(weights, grads):
metrics["gradients/" + weight.name.split(":")[0] + ".gradient"] = (
wandb.Histogram(grad)
)
return metrics
def _log_dataframe(self):
x, y_true, y_pred = None, None, None
if self.validation_data:
x, y_true = self.validation_data[0], self.validation_data[1]
y_pred = self.model.predict(x)
elif self.generator:
if not self.validation_steps:
wandb.termwarn(
"when using a generator for validation data with dataframes, "
"you must pass validation_steps. skipping"
)
return None
for _ in range(self.validation_steps):
bx, by_true = next(self.generator)
by_pred = self.model.predict(bx)
if x is None:
x, y_true, y_pred = bx, by_true, by_pred
else:
x, y_true, y_pred = (
np.append(x, bx, axis=0),
np.append(y_true, by_true, axis=0),
np.append(y_pred, by_pred, axis=0),
)
if self.input_type in ("image", "images") and self.output_type == "label":
return wandb.image_categorizer_dataframe(
x=x, y_true=y_true, y_pred=y_pred, labels=self.labels
)
elif (
self.input_type in ("image", "images")
and self.output_type == "segmentation_mask"
):
return wandb.image_segmentation_dataframe(
x=x,
y_true=y_true,
y_pred=y_pred,
labels=self.labels,
class_colors=self.class_colors,
)
else:
wandb.termwarn(
f"unknown dataframe type for input_type={self.input_type} and output_type={self.output_type}"
)
return None
def _save_model(self, epoch):
if wandb.run.disabled:
return
if self.verbose > 0:
wandb.termlog(
f"Epoch {epoch:05d}: {self.monitor} improved from {self.best:.5f} to {self.current:.5f}, "
f"saving model to {self.filepath}"
)
try:
if self.save_weights_only:
self.model.save_weights(self.filepath, overwrite=True)
else:
self.model.save(self.filepath, overwrite=True)
# Was getting `RuntimeError: Unable to create link` in TF 1.13.1
# also saw `TypeError: can't pickle _thread.RLock objects`
except (ImportError, RuntimeError, TypeError, AttributeError):
logger.exception("Error saving model in the h5py format")
wandb.termerror(
"Can't save model in the h5py format. The model will be saved as "
"as an W&B Artifact in the 'tf' format."
)
def _save_model_as_artifact(self, epoch):
if wandb.run.disabled:
return
# Save the model in the SavedModel format.
# TODO: Replace this manual artifact creation with the `log_model` method
# after `log_model` is released from beta.
self.model.save(self.filepath[:-3], overwrite=True, save_format="tf")
# Log the model as artifact.
name = wandb.util.make_artifact_name_safe(f"model-{wandb.run.name}")
model_artifact = wandb.Artifact(name, type="model")
model_artifact.add_dir(self.filepath[:-3])
wandb.run.log_artifact(model_artifact, aliases=["latest", f"epoch_{epoch}"])
# Remove the SavedModel from wandb dir as we don't want to log it to save memory.
shutil.rmtree(self.filepath[:-3])
def get_flops(self) -> float:
"""Calculate FLOPS [GFLOPs] for a tf.keras.Model or tf.keras.Sequential model in inference mode.
It uses tf.compat.v1.profiler under the hood.
"""
if not hasattr(self, "model"):
raise wandb.Error("self.model must be set before using this method.")
if not isinstance(
self.model, (tf.keras.models.Sequential, tf.keras.models.Model)
):
raise TypeError(
"Calculating FLOPS is only supported for "
"`tf.keras.Model` and `tf.keras.Sequential` instances."
)
from tensorflow.python.framework.convert_to_constants import (
convert_variables_to_constants_v2_as_graph,
)
# Compute FLOPs for one sample
batch_size = 1
inputs = [
tf.TensorSpec([batch_size] + inp.shape[1:], inp.dtype)
for inp in self.model.inputs
]
# convert tf.keras model into frozen graph to count FLOPs about operations used at inference
real_model = tf.function(self.model).get_concrete_function(inputs)
frozen_func, _ = convert_variables_to_constants_v2_as_graph(real_model)
# Calculate FLOPs with tf.profiler
run_meta = tf.compat.v1.RunMetadata()
opts = (
tf.compat.v1.profiler.ProfileOptionBuilder(
tf.compat.v1.profiler.ProfileOptionBuilder().float_operation()
)
.with_empty_output()
.build()
)
flops = tf.compat.v1.profiler.profile(
graph=frozen_func.graph, run_meta=run_meta, cmd="scope", options=opts
)
# convert to GFLOPs
return (flops.total_float_ops / 1e9) / 2
|