File size: 7,072 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
"""Use wandb to track machine learning work.
Train and fine-tune models, manage models from experimentation to production.
For guides and examples, see https://docs.wandb.ai.
For scripts and interactive notebooks, see https://github.com/wandb/examples.
For reference documentation, see https://docs.wandb.com/ref/python.
"""
from __future__ import annotations
__version__ = "0.20.1"
from wandb.errors import Error
# This needs to be early as other modules call it.
from wandb.errors.term import termsetup, termlog, termerror, termwarn
# Configure the logger as early as possible for consistent behavior.
from wandb.sdk.lib import wb_logging as _wb_logging
_wb_logging.configure_wandb_logger()
from wandb import sdk as wandb_sdk
import wandb
wandb.wandb_lib = wandb_sdk.lib # type: ignore
init = wandb_sdk.init
setup = wandb_sdk.setup
_attach = wandb_sdk._attach
_sync = wandb_sdk._sync
_teardown = wandb_sdk.teardown
finish = wandb_sdk.finish
join = finish
login = wandb_sdk.login
helper = wandb_sdk.helper
sweep = wandb_sdk.sweep
controller = wandb_sdk.controller
require = wandb_sdk.require
Artifact = wandb_sdk.Artifact
AlertLevel = wandb_sdk.AlertLevel
Settings = wandb_sdk.Settings
Config = wandb_sdk.Config
from wandb.apis import InternalApi, PublicApi
from wandb.errors import CommError, UsageError
_preinit = wandb.wandb_lib.preinit # type: ignore
_lazyloader = wandb.wandb_lib.lazyloader # type: ignore
# Call import module hook to set up any needed require hooks
wandb.sdk.wandb_require._import_module_hook()
from wandb.integration.torch import wandb_torch
# Move this (keras.__init__ expects it at top level)
from wandb.sdk.data_types._private import _cleanup_media_tmp_dir
_cleanup_media_tmp_dir()
from wandb.data_types import Graph
from wandb.data_types import Image
from wandb.data_types import Plotly
# from wandb.data_types import Bokeh # keeping out of top level for now since Bokeh plots have poor UI
from wandb.data_types import Video
from wandb.data_types import Audio
from wandb.data_types import Table
from wandb.data_types import Html
from wandb.data_types import box3d
from wandb.data_types import Object3D
from wandb.data_types import Molecule
from wandb.data_types import Histogram
from wandb.data_types import Classes
from wandb.data_types import JoinedTable
from wandb.wandb_agent import agent
from wandb.plot import visualize, plot_table
from wandb.integration.sagemaker import sagemaker_auth
from wandb.sdk.internal import profiler
# Artifact import types
from wandb.sdk.artifacts.artifact_ttl import ArtifactTTL
# Used to make sure we don't use some code in the incorrect process context
_IS_INTERNAL_PROCESS = False
def _set_internal_process(disable=False):
global _IS_INTERNAL_PROCESS
if _IS_INTERNAL_PROCESS is None:
return
if disable:
_IS_INTERNAL_PROCESS = None
return
_IS_INTERNAL_PROCESS = True
def _assert_is_internal_process():
if _IS_INTERNAL_PROCESS is None:
return
assert _IS_INTERNAL_PROCESS
def _assert_is_user_process():
if _IS_INTERNAL_PROCESS is None:
return
assert not _IS_INTERNAL_PROCESS
# globals
Api = PublicApi
api = InternalApi()
run: wandb_sdk.wandb_run.Run | None = None
config = _preinit.PreInitObject("wandb.config", wandb_sdk.wandb_config.Config)
summary = _preinit.PreInitObject("wandb.summary", wandb_sdk.wandb_summary.Summary)
log = _preinit.PreInitCallable("wandb.log", wandb_sdk.wandb_run.Run.log) # type: ignore
watch = _preinit.PreInitCallable("wandb.watch", wandb_sdk.wandb_run.Run.watch) # type: ignore
unwatch = _preinit.PreInitCallable("wandb.unwatch", wandb_sdk.wandb_run.Run.unwatch) # type: ignore
save = _preinit.PreInitCallable("wandb.save", wandb_sdk.wandb_run.Run.save) # type: ignore
restore = wandb_sdk.wandb_run.restore
use_artifact = _preinit.PreInitCallable(
"wandb.use_artifact", wandb_sdk.wandb_run.Run.use_artifact # type: ignore
)
log_artifact = _preinit.PreInitCallable(
"wandb.log_artifact", wandb_sdk.wandb_run.Run.log_artifact # type: ignore
)
log_model = _preinit.PreInitCallable(
"wandb.log_model", wandb_sdk.wandb_run.Run.log_model # type: ignore
)
use_model = _preinit.PreInitCallable(
"wandb.use_model", wandb_sdk.wandb_run.Run.use_model # type: ignore
)
link_model = _preinit.PreInitCallable(
"wandb.link_model", wandb_sdk.wandb_run.Run.link_model # type: ignore
)
define_metric = _preinit.PreInitCallable(
"wandb.define_metric", wandb_sdk.wandb_run.Run.define_metric # type: ignore
)
mark_preempting = _preinit.PreInitCallable(
"wandb.mark_preempting", wandb_sdk.wandb_run.Run.mark_preempting # type: ignore
)
alert = _preinit.PreInitCallable("wandb.alert", wandb_sdk.wandb_run.Run.alert) # type: ignore
# record of patched libraries
patched = {"tensorboard": [], "keras": [], "gym": []} # type: ignore
keras = _lazyloader.LazyLoader("wandb.keras", globals(), "wandb.integration.keras")
sklearn = _lazyloader.LazyLoader("wandb.sklearn", globals(), "wandb.sklearn")
tensorflow = _lazyloader.LazyLoader(
"wandb.tensorflow", globals(), "wandb.integration.tensorflow"
)
xgboost = _lazyloader.LazyLoader(
"wandb.xgboost", globals(), "wandb.integration.xgboost"
)
catboost = _lazyloader.LazyLoader(
"wandb.catboost", globals(), "wandb.integration.catboost"
)
tensorboard = _lazyloader.LazyLoader(
"wandb.tensorboard", globals(), "wandb.integration.tensorboard"
)
gym = _lazyloader.LazyLoader("wandb.gym", globals(), "wandb.integration.gym")
lightgbm = _lazyloader.LazyLoader(
"wandb.lightgbm", globals(), "wandb.integration.lightgbm"
)
jupyter = _lazyloader.LazyLoader("wandb.jupyter", globals(), "wandb.jupyter")
sacred = _lazyloader.LazyLoader("wandb.sacred", globals(), "wandb.integration.sacred")
def ensure_configured():
global api
api = InternalApi()
def set_trace():
import pdb # TODO: support other debuggers
# frame = sys._getframe().f_back
pdb.set_trace() # TODO: pass the parent stack...
def load_ipython_extension(ipython):
ipython.register_magics(wandb.jupyter.WandBMagics)
if wandb_sdk.lib.ipython.in_notebook():
from IPython import get_ipython # type: ignore[import-not-found]
load_ipython_extension(get_ipython())
from .analytics import Sentry as _Sentry
if "dev" in __version__:
import wandb.env
import os
# Disable error reporting in dev versions.
os.environ[wandb.env.ERROR_REPORTING] = os.environ.get(
wandb.env.ERROR_REPORTING,
"false",
)
_sentry = _Sentry()
_sentry.setup()
__all__ = (
"__version__",
"init",
"finish",
"setup",
"save",
"sweep",
"controller",
"agent",
"config",
"log",
"summary",
"join",
"Api",
"Graph",
"Image",
"Plotly",
"Video",
"Audio",
"Table",
"Html",
"box3d",
"Object3D",
"Molecule",
"Histogram",
"ArtifactTTL",
"log_artifact",
"use_artifact",
"log_model",
"use_model",
"link_model",
"define_metric",
"watch",
"unwatch",
"plot_table",
)
|