File size: 11,248 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import dataclass, field
from typing import Any, Optional
from transformers import TrainingArguments
@dataclass
class SFTConfig(TrainingArguments):
r"""
Configuration class for the [`SFTTrainer`].
Only the parameters specific to SFT training are listed here. For details on other parameters, refer to the
[`~transformers.TrainingArguments`] documentation.
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
> Parameters that control the model
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
argument of the [`SFTTrainer`] is provided as a string.
> Parameters that control the data preprocessing
dataset_text_field (`str`, *optional*, defaults to `"text"`):
Name of the column that contains text data in the dataset.
dataset_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Dictionary of optional keyword arguments for the dataset preparation. The only supported key is
`skip_prepare_dataset`.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
eos_token (`str` or `None`, *optional*, defaults to `None`):
Token used to indicate the end of a turn or sequence. If `None`, it defaults to `processing_class.eos_token`.
pad_token (`int` or `None`, *optional*, defaults to `None`):
Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that is also `None`,
it falls back to `processing_class.eos_token`.
max_length (`int` or `None`, *optional*, defaults to `1024`):
Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from the right.
If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length.
packing (`bool`, *optional*, defaults to `False`):
Whether to pack multiple sequences into a fixed-length format. Uses `max_length` to define sequence length.
padding_free (`bool`, *optional*, defaults to `False`):
Whether to perform forward passes without padding by flattening all sequences in the batch into a single
continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this is only
supported with the `flash_attention_2` attention implementation, which can efficiently handle the flattened
batch structure.
eval_packing (`bool` or `None`, *optional*, defaults to `None`):
Whether to pack the eval dataset. If `None`, uses the same value as `packing`.
> Parameters that control the training
learning_rate (`float`, *optional*, defaults to `2e-5`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
completion_only_loss (`bool` or `None`, *optional*, defaults to `None`):
Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is computed
only on the completion, which is supported only for [prompt-completion](#prompt-completion) datasets. If
`False`, loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset:
loss is computed on the completion for [prompt-completion](#prompt-completion) datasets, and on
the full sequence for [language modeling](#language-modeling) datasets.
"""
# Parameters that control the model
model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments for `AutoModelForCausalLM.from_pretrained`, used when the `model` argument of "
"the `SFTTrainer` is provided as a string."
},
)
# Parameters that control the data preprocessing
dataset_text_field: str = field(
default="text",
metadata={"help": "Name of the column that contains text data in the dataset."},
)
dataset_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Dictionary of optional keyword arguments for the dataset preparation. The only supported key is "
"`skip_prepare_dataset`."
},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
eos_token: Optional[str] = field(
default=None,
metadata={
"help": "Token used to indicate the end of a turn or sequence. If `None`, it defaults to `processing_class.eos_token`."
},
)
pad_token: Optional[str] = field(
default=None,
metadata={
"help": "Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that "
"is also `None`, it falls back to `processing_class.eos_token`."
},
)
max_length: Optional[int] = field(
default=1024,
metadata={
"help": "Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from"
"the right. If `None`, no truncation is applied. When packing is enabled, this value sets the "
"sequence length."
},
)
packing: bool = field(
default=False,
metadata={
"help": "Whether to pack multiple sequences into a fixed-length format. Uses `max_length` to define "
"sequence length."
},
)
padding_free: bool = field(
default=False,
metadata={
"help": "Whether to perform forward passes without padding by flattening all sequences in the batch into "
"a single continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, "
"this is only supported with the `flash_attention_2` attention implementation, which can efficiently "
"handle the flattened batch structure."
},
)
eval_packing: Optional[bool] = field(
default=None,
metadata={"help": "Whether to pack the eval dataset. If `None`, uses the same value as `packing`."},
)
# Parameters that control the training
learning_rate: float = field(
default=2.0e-5,
metadata={
"help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of "
"`TrainingArguments`."
},
)
completion_only_loss: Optional[bool] = field(
default=None,
metadata={
"help": (
"Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is "
"computed only on the completion, which is supported only for prompt-completion datasets. If `False`, "
"loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset: "
"loss is computed on the completion for prompt-completion datasets, and on the full sequence for "
"language modeling datasets."
)
},
)
# Deprecated parameters
dataset_batch_size: Optional[int] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. You can safely remove this "
"parameter from your configuration."
},
)
num_of_sequences: Optional[int] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. Use `max_length` instead, "
"which specifies the maximum length of the tokenized sequence, unlike `num_of_sequences`, which referred "
"to string sequences."
},
)
chars_per_token: Optional[float] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. If you want to customize the "
"packing length, use `max_length`."
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.20.0. Use `max_length` instead."
},
)
use_liger: Optional[bool] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. Use `use_liger_kernel` "
"instead."
},
)
def __post_init__(self):
super().__post_init__()
if self.dataset_batch_size is not None:
warnings.warn(
"`dataset_batch_size` is deprecated and will be removed in version 0.18.0. You can safely remove this "
"parameter from your configuration.",
DeprecationWarning,
)
if self.num_of_sequences is not None:
warnings.warn(
"`num_of_sequences` is deprecated and will be removed in version 0.18.0. Use `max_length` instead, "
"which specifies the maximum length of the tokenized sequence, unlike `num_of_sequences`, which "
"referred to string sequences.",
DeprecationWarning,
)
if self.chars_per_token is not None:
warnings.warn(
"`chars_per_token` is deprecated and will be removed in version 0.18.0. If you want to customize the "
"packing length, use `max_length`.",
DeprecationWarning,
)
if self.max_seq_length is not None:
warnings.warn(
"`max_seq_length` is deprecated and will be removed in version 0.20.0. Use `max_length` instead.",
DeprecationWarning,
)
self.max_length = self.max_seq_length
if self.use_liger is not None:
warnings.warn(
"`use_liger` is deprecated and will be removed in version 0.18.0. Use `use_liger_kernel` instead.",
DeprecationWarning,
)
self.use_liger_kernel = self.use_liger
|