File size: 8,164 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
from transformers import TrainingArguments
@dataclass
class OnlineDPOConfig(TrainingArguments):
r"""
Configuration class for the [`OnlineDPOTrainer`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
learning_rate (`float`, *optional*, defaults to `5e-7`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
reward_model_path (`str` or `None`, *optional*, defaults to `None`):
Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both.
judge (`str` or `None`, *optional*, defaults to `None`):
Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both.
max_new_tokens (`int`, *optional*, defaults to `64`):
Maximum number of tokens to generate per completion.
max_length (`int`, *optional*, defaults to `256`):
Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the
sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as
possible.
temperature (`float`, *optional*, defaults to `0.9`):
Temperature for sampling. The higher the temperature, the more random the completions.
missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`):
Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage
to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive
value.
beta (`float` or `list[float]`, *optional*, defaults to `0.1`):
Parameter controlling the deviation from the reference model. Higher Ξ² means less deviation from the
reference model. For the IPO loss (`loss_type="ipo"`), Ξ² is the regularization parameter denoted by Ο in
the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the Ξ² is
selected for each new epoch and the last Ξ² is used for the rest of the epochs.
loss_type (`str`, *optional*, defaults to `"sigmoid"`):
Type of loss to use. Possible values are:
- `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper.
- `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
disable_dropout (`bool`, *optional*, defaults to `True`):
Whether to disable dropout in the model and reference model.
use_vllm (`bool`, *optional*, defaults to `False`):
Whether to use vLLM for generating completions. Requires vLLM to be installed (`pip install vllm`).
gpu_memory_utilization (`float`, *optional*, defaults to `0.55`):
The vLLM memory utilization. The default value is 0.55.
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
improving generation speed. However, disabling this option allows training models that exceed the VRAM
capacity of a single GPU, albeit at the cost of slower generation.
"""
learning_rate: float = field(
default=5e-7,
metadata={
"help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of "
"transformers.TrainingArguments."
},
)
reward_model_path: Optional[str] = field(
default=None,
metadata={
"help": "Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both."
},
)
judge: Optional[str] = field(
default=None,
metadata={
"help": "Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both."
},
)
max_new_tokens: int = field(
default=64,
metadata={"help": "Maximum number of tokens to generate per completion."},
)
max_length: int = field(
default=512,
metadata={
"help": "Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If "
"the sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the "
"completion as possible."
},
)
temperature: float = field(
default=0.9,
metadata={"help": "Temperature for sampling. The higher the temperature, the more random the completions."},
)
missing_eos_penalty: Optional[float] = field(
default=None,
metadata={
"help": "Penalty applied to the score when the model fails to generate an EOS token. This is useful to "
"encourage to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be "
"a positive value."
},
)
beta: list[float] = field(
default_factory=lambda: [0.1],
metadata={
"help": "Parameter controlling the deviation from the reference model. Higher Ξ² means less deviation from "
"the reference model. For the IPO loss (`loss_type='ipo'`), Ξ² is the regularization parameter denoted by "
"Ο in the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the Ξ² "
"is selected for each new epoch and the last Ξ² is used for the rest of the epochs."
},
)
loss_type: str = field(
default="sigmoid",
metadata={
"help": "Type of loss to use.",
"choices": ["sigmoid", "ipo"],
},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
disable_dropout: bool = field(
default=True,
metadata={"help": "Whether to disable dropout in the model."},
)
use_vllm: bool = field(
default=False,
metadata={
"help": "Whether to use vLLM for generating completions. Requires vLLM to be installed "
"(`pip install vllm`)."
},
)
gpu_memory_utilization: Optional[float] = field(
default=0.55,
metadata={
"help": "The vLLM memory utilization. The default value is 0.55.",
},
)
ds3_gather_for_generation: bool = field(
default=True,
metadata={
"help": "This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for "
"generation, improving generation speed. However, disabling this option allows training models that "
"exceed the VRAM capacity of a single GPU, albeit at the cost of slower generation."
},
)
def __post_init__(self):
super().__post_init__()
if hasattr(self.beta, "__len__") and len(self.beta) == 1:
self.beta = self.beta[0]
|