File size: 25,832 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import dataclass, field
from typing import Optional, Union
import transformers
from packaging import version
from transformers import TrainingArguments
@dataclass
class GRPOConfig(TrainingArguments):
r"""
Configuration class for the [`GRPOTrainer`].
Only the parameters specific to GRPO training are listed here. For details on other parameters, refer to the
[`~transformers.TrainingArguments`] documentation.
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
> Parameters that control the model and reference model
model_init_kwargs (`str`, `dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
argument of the [`GRPOTrainer`] is provided as a string.
disable_dropout (`bool`, *optional*, defaults to `False`):
Whether to disable dropout in the model. This is useful for training with a reference model, as it
prevents the model from generating different logprobs for the same input.
> Parameters that control the data preprocessing
remove_unused_columns (`bool`, *optional*, defaults to `False`):
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`.
max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left.
num_generations (`int` or `None`, *optional*, defaults to `8`):
Number of generations per prompt to sample. The effective batch size (num_processes *
per_device_batch_size * gradient_accumulation_steps) must be evenly divisible by this value.
max_completion_length (`int` or `None`, *optional*, defaults to `256`):
Maximum length of the generated completion.
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
improving generation speed. However, disabling this option allows training models that exceed the VRAM
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible
with vLLM generation.
shuffle_dataset (`bool`, *optional*, defaults to `True`):
Whether to shuffle the training dataset.
> Parameters that control generation
temperature (`float`, defaults to `0.9`):
Temperature for sampling. The higher the temperature, the more random the completions.
top_p (`float`, *optional*, defaults to `1.0`):
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to
`1.0` to consider all tokens.
top_k (`int` or `None`, *optional*, defaults to `50`):
Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is
disabled.
min_p (`float` or `None`, *optional*, defaults to `None`):
Minimum token probability, which will be scaled by the probability of the most likely token. It must be a
value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range.
repetition_penalty (`float`, *optional*, defaults to `1.0`):
Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far.
Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat
tokens.
cache_implementation (`str` or `None`, *optional*, defaults to `None`):
Implementation of the cache method for faster generation when use_vllm is set to False.
> Parameters that control generation acceleration powered by vLLM
use_vllm (`bool`, *optional*, defaults to `False`):
Whether to use vLLM for generating completions. If set to `True`, ensure that a GPU is kept unused for
training, as vLLM will require one for generation. vLLM must be installed (`pip install vllm`).
vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`):
Host of the vLLM server to connect to.
vllm_server_port (`int`, *optional*, defaults to `8000`):
Port of the vLLM server to connect to.
vllm_server_timeout (`float`, *optional*, defaults to `120.0`):
Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the
timeout, a `ConnectionError` is raised.
vllm_guided_decoding_regex (`str` or `None`, *optional*, defaults to `None`):
Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled.
> Parameters that control the training
learning_rate (`float`, *optional*, defaults to `1e-6`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
beta (`float`, *optional*, defaults to `0.04`):
KL coefficient. If `0.0`, the reference model is not loaded, reducing memory usage and improving training
speed, but may be numerically unstable for long training runs.
num_iterations (`int`, *optional*, defaults to `1`):
Number of iterations per batch (denoted as μ in the algorithm).
epsilon (`float`, *optional*, defaults to `0.2`):
Epsilon value for clipping.
epsilon_high (`float` or `None`, *optional*, defaults to `None`):
Upper-bound epsilon value for clipping. If not specified, it defaults to the same value as the lower-bound
specified in argument `epsilon`. Paper [DAPO](https://huggingface.co/papers/2503.14476) recommends `0.28`.
reward_weights (`list[float]` or `None`, *optional*, defaults to `None`):
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are
weighted equally with weight `1.0`.
scale_rewards (`bool`, *optional*, defaults to `True`):
Whether to scale the rewards by dividing them by their standard deviation. If `True` (default), the rewards
are normalized by the standard deviation, ensuring they have unit variance. If `False`, no scaling is
applied. The [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) recommends not scaling the rewards,
as scaling by the standard deviation introduces a question-level difficulty bias.
loss_type (`str`, *optional*, defaults to `"bnpo"`):
Specifies the loss formulation to use. Supported values are:
- `"grpo"`: Aggregates token-level losses by normalizing over sequence length. Not recommended due to
length bias—this approach tends to prefer shorter completions with positive advantages and longer ones
with negative advantages.
- `"bnpo"`: Aggregates token-level losses by normalizing number of active token in the local batch.
Note that normalization is performed over the local batch only, so results may slightly vary depending
on the local batch size, despite a constant effective batch size. When using
`per_device_train_batch_size==1`, the loss is equivalent to the GRPO loss.
- `"dr_grpo"`: Aggregates token-level losses by normalizing with a global constant. This method was
introduced in the [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) to eliminate length bias.
The value of the constant corresponds to `max_completion_length`.
mask_truncated_completions (`bool`, *optional*, defaults to `False`):
When enabled, truncated completions are excluded from the loss calculation, preventing them from being
incorrectly penalized and introducing noise during training. According to the
[DAPO](https://huggingface.co/papers/2503.14476) paper, this is a good practice for training stability.
sync_ref_model (`bool`, *optional*, defaults to `False`):
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using
the `ref_model_mixup_alpha` parameter. This synchronization originites from the
[TR-DPO](https://huggingface.co/papers/2404.09656) paper.
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.6`):
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix
between the current policy and the previous reference policy during updates. The reference policy is
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you
must set `sync_ref_model=True`.
ref_model_sync_steps (`int`, *optional*, defaults to `512`):
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how
frequently the current policy is synchronized with the reference policy. To use this parameter, you must
set `sync_ref_model=True`.
use_liger_loss (`bool`, *optional*, defaults to `False`):
Whether to use the Liger GRPO loss.
> Parameters that control the logging
log_completions (`bool`, *optional*, defaults to `False`):
Whether to log a sample of (prompt, completion) pairs every `logging_steps` steps. If `rich` is
installed, it prints the sample. If `wandb` logging is enabled, it logs it to `wandb`.
num_completions_to_print (`int` or `None`, *optional*, defaults to `None`):
Number of completions to print with `rich`. If `None`, all completions are logged.
wandb_log_unique_prompts (`bool`, *optional*, defaults to `False`):
Whether to log unique prompts in wandb. If `True`, only unique prompts are logged. If `False`, all
prompts are logged.
"""
if version.parse(transformers.__version__) <= version.parse("4.50.3"):
from transformers.training_args import _VALID_DICT_FIELDS
_VALID_DICT_FIELDS.append("model_init_kwargs")
else:
_VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs"]
# Parameters that control the model and reference model
model_init_kwargs: Optional[Union[dict, str]] = field(
default=None,
metadata={
"help": "Keyword arguments for `transformers.AutoModelForCausalLM.from_pretrained`, used when the `model` "
"argument of the `GRPOTrainer` is provided as a string."
},
)
disable_dropout: bool = field(
default=False,
metadata={
"help": "Whether to disable dropout in the model. This is useful for training with a reference model, as "
"it prevents the model from generating different logprobs for the same input."
},
)
# Parameters that control the data preprocessing
# The default value remove_unused_columns is overwritten from the parent class, because in GRPO we usually rely on
# additional columns to compute the reward
remove_unused_columns: Optional[bool] = field(
default=False,
metadata={
"help": "Whether to only keep the column 'prompt' in the dataset. If you use a custom reward function "
"that requires any column other than 'prompts' and 'completions', you should keep this to `False`."
},
)
max_prompt_length: Optional[int] = field(
default=512,
metadata={
"help": "Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left."
},
)
num_generations: Optional[int] = field(
default=8,
metadata={
"help": "Number of generations to sample. The effective batch size (num_processes * per_device_batch_size "
"* gradient_accumulation_steps) must be evenly divisible by this value."
},
)
max_completion_length: Optional[int] = field(
default=256,
metadata={"help": "Maximum length of the generated completion."},
)
ds3_gather_for_generation: bool = field(
default=True,
metadata={
"help": "This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for "
"generation, improving generation speed. However, disabling this option allows training models that "
"exceed the VRAM capacity of a single GPU, albeit at the cost of slower generation. Disabling this option "
"is not compatible with vLLM generation."
},
)
shuffle_dataset: Optional[bool] = field(
default=True,
metadata={"help": "Whether to shuffle the training dataset."},
)
# Parameters that control generation
temperature: float = field(
default=0.9,
metadata={"help": "Temperature for sampling. The higher the temperature, the more random the completions."},
)
top_p: float = field(
default=1.0,
metadata={
"help": "Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. "
"Set to 1.0 to consider all tokens."
},
)
top_k: Optional[int] = field(
default=50,
metadata={
"help": "Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, "
"top-k-filtering is disabled."
},
)
min_p: Optional[float] = field(
default=None,
metadata={
"help": "Minimum token probability, which will be scaled by the probability of the most likely token. It "
"must be a value between 0.0 and 1.0. Typical values are in the 0.01-0.2 range."
},
)
repetition_penalty: float = field(
default=1.0,
metadata={
"help": "Float that penalizes new tokens based on whether they appear in the prompt and the generated "
"text so far. Values > 1.0 encourage the model to use new tokens, while values < 1.0 encourage the model "
"to repeat tokens."
},
)
cache_implementation: Optional[str] = field(
default=None,
metadata={"help": "Implementation of the cache method for faster generation when use_vllm is set to False."},
)
# Parameters that control generation acceleration powered by vLLM
use_vllm: bool = field(
default=False,
metadata={
"help": "Whether to use vLLM for generating completions. If set to `True`, ensure that a vLLM server is "
"running. To run the server, install vLLM (`pip install vllm`) and run `trl vllm-serve`."
},
)
vllm_server_host: str = field(
default="0.0.0.0",
metadata={"help": "Host of the vLLM server to connect to."},
)
vllm_server_port: int = field(
default=8000,
metadata={"help": "Port of the vLLM server to connect to."},
)
vllm_server_timeout: float = field(
default=240.0,
metadata={
"help": "Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up "
"after the timeout, a `ConnectionError` is raised."
},
)
vllm_guided_decoding_regex: Optional[str] = field(
default=None,
metadata={"help": "Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled."},
)
# Parameters that control the training
learning_rate: float = field(
default=1e-6,
metadata={
"help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of "
"`transformers.TrainingArguments`."
},
)
beta: float = field(
default=0.04,
metadata={
"help": "KL coefficient. If `0.0`, the reference model is not loaded, reducing memory usage and improving "
"training speed, but may be numerically unstable for long training runs."
},
)
num_iterations: int = field(
default=1,
metadata={"help": "Number of iterations per batch (denoted as μ in the algorithm)."},
)
epsilon: float = field(
default=0.2,
metadata={"help": "Epsilon value for clipping."},
)
epsilon_high: Optional[float] = field(
default=None,
metadata={
"help": "Upper-bound epsilon value for clipping. If not specified, it defaults to the same value as the "
"lower-bound specified in argument `epsilon`. Paper DAPO recommends `0.28`."
},
)
reward_weights: Optional[list[float]] = field(
default=None,
metadata={
"help": "Weights for each reward function. Must match the number of reward functions. If `None`, all "
"rewards are weighted equally with weight `1.0`."
},
)
scale_rewards: bool = field(
default=True,
metadata={
"help": "Whether to scale the rewards by dividing them by their standard deviation. If `True` (default), "
"the rewards are normalized by the standard deviation, ensuring they have unit variance. If `False`, no "
"scaling is applied. The Dr. GRPO paper recommends not scaling the rewards, as scaling by the standard "
"deviation introduces a question-level difficulty bias."
},
)
loss_type: str = field(
default="bnpo",
metadata={
"help": "Specifies the loss formulation to use. Supported values are `grpo`, `bnpo`, and `dr_grpo`. "
"`'grpo'`: Aggregates token-level losses by normalizing over sequence length. Not recommended due to "
"length bias—this approach tends to prefer shorter completions with positive advantages and longer ones "
"with negative advantages. "
"`'bnpo'`: Aggregates token-level losses by normalizing number of active token in the local batch. "
"Note that normalization is performed over the local batch only, so results may slightly vary depending "
"on the local batch size, despite a constant effective batch size. When using "
"`per_device_train_batch_size==1`, the loss is equivalent to the GRPO loss. "
"`'dr_grpo'`: Aggregates token-level losses by normalizing with a global constant. This method was "
"introduced in the Dr. GRPO paper to eliminate length bias. The value of the constant corresponds to "
"`max_completion_length`."
},
)
mask_truncated_completions: bool = field(
default=False,
metadata={
"help": "When enabled, truncated completions are excluded from the loss calculation, preventing them from "
"being incorrectly penalized and introducing noise during training. According to the DAPO paper, this is "
"a good practice for training stability."
},
)
sync_ref_model: bool = field(
default=False,
metadata={
"help": "Whether to synchronize the reference model with the active model every `ref_model_sync_steps` "
"steps, using the `ref_model_mixup_alpha` parameter."
},
)
ref_model_mixup_alpha: float = field(
default=0.6,
metadata={
"help": "α parameter from the TR-DPO paper, which controls the mix between the current policy and the "
"previous reference policy during updates. The reference policy is updated according to the equation: "
"`π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you must set `sync_ref_model=True`."
},
)
ref_model_sync_steps: int = field(
default=512,
metadata={
"help": "τ parameter from the TR-DPO paper, which determines how frequently the current policy is "
"synchronized with the reference policy. To use this parameter, you must set `sync_ref_model=True`."
},
)
use_liger_loss: bool = field(
default=False,
metadata={"help": "Whether to use the Liger GRPO loss."},
)
# Parameters that control the logging
log_completions: bool = field(
default=False,
metadata={
"help": "Whether to log a sample of (prompt, completion) pairs every `logging_steps` steps. If `rich` is "
"installed, it prints the sample. If `wandb` logging is enabled, it logs it to `wandb`."
},
)
num_completions_to_print: Optional[int] = field(
default=None,
metadata={"help": "Number of completions to print with `rich`. If `None`, all completions are logged."},
)
wandb_log_unique_prompts: Optional[bool] = field(
default=False,
metadata={
"help": "Whether to log unique prompts in wandb. If `True`, only unique prompts are logged. If `False`, "
"all prompts are logged."
},
)
# Deprecated parameters
vllm_device: Optional[str] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. To use vLLM, start a vLLM "
"server with the `trl vllm-serve` command."
},
)
vllm_gpu_memory_utilization: Optional[float] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. To control the GPU memory "
"utilization for vLLM, you should now use the `gpu_memory_utilization` parameter in the vLLM server "
"configuration."
},
)
vllm_dtype: Optional[str] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. To control the data type for "
"vLLM generation, you should now use the `dtype` parameter in the vLLM server configuration."
},
)
vllm_max_model_len: Optional[int] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. To control the "
"`max_model_len` for vLLM, you should now use the `max_model_len` parameter in the vLLM server "
"configuration."
},
)
vllm_enable_prefix_caching: Optional[bool] = field(
default=None,
metadata={
"help": "This parameter is deprecated and will be removed in version 0.18.0. To control prefix caching in "
"vLLM, you should now use the `enable_prefix_caching` parameter in the vLLM server configuration."
},
)
def __post_init__(self):
super().__post_init__()
if self.vllm_device is not None:
warnings.warn(
"`vllm_device` is deprecated and will be removed in version 0.18.0. To use vLLM, start a vLLM server "
"with the `trl vllm-serve` command.",
DeprecationWarning,
)
if self.vllm_gpu_memory_utilization is not None:
warnings.warn(
"`vllm_gpu_memory_utilization` is deprecated and will be removed in v0.18. To control the GPU memory "
"utilization for vLLM, you should now use the `gpu_memory_utilization` parameter in the vLLM server "
"configuration.",
DeprecationWarning,
)
if self.vllm_dtype is not None:
warnings.warn(
"`vllm_dtype` is deprecated and will be removed in version 0.18.0. To control the data type for vLLM "
"generation, you should now use the `dtype` parameter in the vLLM server configuration.",
DeprecationWarning,
)
if self.vllm_max_model_len is not None:
warnings.warn(
"`vllm_max_model_len` is deprecated and will be removed in version 0.18.0. To control the "
"`max_model_len` for vLLM, you should now use the `max_model_len` parameter in the vLLM server "
"configuration.",
DeprecationWarning,
)
if self.vllm_enable_prefix_caching is not None:
warnings.warn(
"`vllm_enable_prefix_caching` is deprecated and will be removed in version 0.18.0. To control prefix "
"caching in vLLM, you should now use the `enable_prefix_caching` parameter in the vLLM server "
"configuration.",
DeprecationWarning,
)
|