File size: 60,168 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
#!/usr/bin/env python
# coding=utf-8

# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from enum import Enum
from inspect import Parameter, signature
from typing import Any, Dict, List, Optional, Union

from packaging import version

from ..utils import is_auto_awq_available, is_hqq_available, is_torch_available, is_torchao_available, logging


if is_torch_available():
    import torch

logger = logging.get_logger(__name__)


class QuantizationMethod(str, Enum):
    BITS_AND_BYTES = "bitsandbytes"
    GPTQ = "gptq"
    AWQ = "awq"
    AQLM = "aqlm"
    QUANTO = "quanto"
    EETQ = "eetq"
    HQQ = "hqq"
    COMPRESSED_TENSORS = "compressed-tensors"
    FBGEMM_FP8 = "fbgemm_fp8"
    TORCHAO = "torchao"
    BITNET = "bitnet"


class AWQLinearVersion(str, Enum):
    GEMM = "gemm"
    GEMV = "gemv"
    EXLLAMA = "exllama"
    IPEX = "ipex"

    @staticmethod
    def from_str(version: str):
        version = version.lower()
        if version == "gemm":
            return AWQLinearVersion.GEMM
        elif version == "gemv":
            return AWQLinearVersion.GEMV
        elif version == "exllama":
            return AWQLinearVersion.EXLLAMA
        elif version == "ipex":
            return AWQLinearVersion.IPEX
        else:
            raise ValueError(f"Unknown AWQLinearVersion {version}")


class AwqBackendPackingMethod(str, Enum):
    AUTOAWQ = "autoawq"
    LLMAWQ = "llm-awq"


@dataclass
class QuantizationConfigMixin:
    """
    Mixin class for quantization config
    """

    quant_method: QuantizationMethod

    @classmethod
    def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs):
        """
        Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters.

        Args:
            config_dict (`Dict[str, Any]`):
                Dictionary that will be used to instantiate the configuration object.
            return_unused_kwargs (`bool`,*optional*, defaults to `False`):
                Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in
                `PreTrainedModel`.
            kwargs (`Dict[str, Any]`):
                Additional parameters from which to initialize the configuration object.

        Returns:
            [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters.
        """
        config = cls(**config_dict)

        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

        if return_unused_kwargs:
            return config, kwargs
        else:
            return config

    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
            use_diff (`bool`, *optional*, defaults to `True`):
                If set to `True`, only the difference between the config instance and the default
                `QuantizationConfig()` is serialized to JSON file.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            config_dict = self.to_dict()
            json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

            writer.write(json_string)

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary. Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        return copy.deepcopy(self.__dict__)

    def __iter__(self):
        """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
        for attr, value in copy.deepcopy(self.__dict__).items():
            yield attr, value

    def __repr__(self):
        return f"{self.__class__.__name__} {self.to_json_string()}"

    def to_json_string(self, use_diff: bool = True) -> str:
        """
        Serializes this instance to a JSON string.

        Args:
            use_diff (`bool`, *optional*, defaults to `True`):
                If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
                is serialized to JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
        if use_diff is True:
            config_dict = self.to_diff_dict()
        else:
            config_dict = self.to_dict()
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

    def update(self, **kwargs):
        """
        Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
        returning all the unused kwargs.

        Args:
            kwargs (`Dict[str, Any]`):
                Dictionary of attributes to tentatively update this class.

        Returns:
            `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
        """
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(self, key):
                setattr(self, key, value)
                to_remove.append(key)

        # Remove all the attributes that were updated, without modifying the input dict
        unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
        return unused_kwargs


@dataclass
class HqqConfig(QuantizationConfigMixin):
    """
    This is wrapper around hqq's BaseQuantizeConfig.

    Args:
        nbits (`int`, *optional*, defaults to 4):
            Number of bits. Supported values are (8, 4, 3, 2, 1).
        group_size (`int`, *optional*, defaults to 64):
            Group-size value. Supported values are any value that is divisble by weight.shape[axis]).
        view_as_float (`bool`, *optional*, defaults to `False`):
            View the quantized weight as float (used in distributed training) if set to `True`.
        axis (`Optional[int]`, *optional*):
            Axis along which grouping is performed. Supported values are 0 or 1.
        dynamic_config (dict, *optional*):
            Parameters for dynamic configuration. The key is the name tag of the layer and the value is a quantization config.
            If set, each layer specified by its id will use its dedicated quantization configuration.
        skip_modules (`List[str]`, *optional*, defaults to `['lm_head']`):
            List of `nn.Linear` layers to skip.
        kwargs (`Dict[str, Any]`, *optional*):
            Additional parameters from which to initialize the configuration object.
    """

    def __init__(
        self,
        nbits: int = 4,
        group_size: int = 64,
        view_as_float: bool = False,
        axis: Optional[int] = None,
        dynamic_config: Optional[dict] = None,
        skip_modules: List[str] = ["lm_head"],
        **kwargs,
    ):
        if is_hqq_available():
            from hqq.core.quantize import BaseQuantizeConfig as HQQBaseQuantizeConfig

        for deprecated_key in ["quant_zero", "quant_scale", "offload_meta"]:
            if deprecated_key in kwargs:
                logger.info(
                    deprecated_key + " is deprecated. This parameter will be ignored in quantization settings."
                )

        if axis is None:
            axis = 1
            logger.info("Setting axis=1 as faster backends such as TorchAO or BitBlas are only compatible with it.")

        if axis not in [0, 1]:
            raise ValueError("Invalid axis value. Only 0 and 1 are allowed.")

        if dynamic_config is not None:
            self.quant_config = {}
            for key in dynamic_config:
                self.quant_config[key] = HQQBaseQuantizeConfig(**dynamic_config[key])
        else:
            self.quant_config = HQQBaseQuantizeConfig(
                **{
                    "nbits": nbits,
                    "group_size": group_size,
                    "view_as_float": view_as_float,
                    "axis": axis,
                }
            )

        self.quant_method = QuantizationMethod.HQQ
        self.skip_modules = skip_modules

        self.post_init()

    def post_init(self):
        r"""
        Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
        """
        pass

    @classmethod
    def from_dict(cls, config: Dict[str, Any]):
        """
        Override from_dict, used in AutoQuantizationConfig.from_dict in quantizers/auto.py
        """
        instance = cls()
        instance.quant_config = config["quant_config"]
        instance.skip_modules = config["skip_modules"]
        return instance

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary. Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        return {
            "quant_config": self.quant_config,
            "quant_method": self.quant_method,
            "skip_modules": self.skip_modules,
        }

    def __repr__(self):
        config_dict = self.to_dict()
        return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"

    def to_diff_dict(self) -> Dict[str, Any]:
        """
        Removes all attributes from config which correspond to the default config attributes for better readability and
        serializes to a Python dictionary.
        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        config_dict = self.to_dict()

        # get the default config dict
        default_config_dict = HqqConfig().to_dict()

        serializable_config_dict = {}

        # only serialize values that differ from the default config
        for key, value in config_dict.items():
            if value != default_config_dict[key]:
                serializable_config_dict[key] = value

        return serializable_config_dict


@dataclass
class BitsAndBytesConfig(QuantizationConfigMixin):
    """
    This is a wrapper class about all possible attributes and features that you can play with a model that has been
    loaded using `bitsandbytes`.

    This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive.

    Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`,
    then more arguments will be added to this class.

    Args:
        load_in_8bit (`bool`, *optional*, defaults to `False`):
            This flag is used to enable 8-bit quantization with LLM.int8().
        load_in_4bit (`bool`, *optional*, defaults to `False`):
            This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from
            `bitsandbytes`.
        llm_int8_threshold (`float`, *optional*, defaults to 6.0):
            This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix
            Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value
            that is above this threshold will be considered an outlier and the operation on those values will be done
            in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but
            there are some exceptional systematic outliers that are very differently distributed for large models.
            These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of
            magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6,
            but a lower threshold might be needed for more unstable models (small models, fine-tuning).
        llm_int8_skip_modules (`List[str]`, *optional*):
            An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as
            Jukebox that has several heads in different places and not necessarily at the last position. For example
            for `CausalLM` models, the last `lm_head` is kept in its original `dtype`.
        llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`):
            This flag is used for advanced use cases and users that are aware of this feature. If you want to split
            your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use
            this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8
            operations will not be run on CPU.
        llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`):
            This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not
            have to be converted back and forth for the backward pass.
        bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`):
            This sets the computational type which might be different than the input type. For example, inputs might be
            fp32, but computation can be set to bf16 for speedups.
        bnb_4bit_quant_type (`str`,  *optional*, defaults to `"fp4"`):
            This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types
            which are specified by `fp4` or `nf4`.
        bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`):
            This flag is used for nested quantization where the quantization constants from the first quantization are
            quantized again.
        bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`):
            This sets the storage type to pack the quanitzed 4-bit prarams.
        kwargs (`Dict[str, Any]`, *optional*):
            Additional parameters from which to initialize the configuration object.
    """

    def __init__(
        self,
        load_in_8bit=False,
        load_in_4bit=False,
        llm_int8_threshold=6.0,
        llm_int8_skip_modules=None,
        llm_int8_enable_fp32_cpu_offload=False,
        llm_int8_has_fp16_weight=False,
        bnb_4bit_compute_dtype=None,
        bnb_4bit_quant_type="fp4",
        bnb_4bit_use_double_quant=False,
        bnb_4bit_quant_storage=None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.BITS_AND_BYTES

        if load_in_4bit and load_in_8bit:
            raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")

        self._load_in_8bit = load_in_8bit
        self._load_in_4bit = load_in_4bit
        self.llm_int8_threshold = llm_int8_threshold
        self.llm_int8_skip_modules = llm_int8_skip_modules
        self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload
        self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight
        self.bnb_4bit_quant_type = bnb_4bit_quant_type
        self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant

        if bnb_4bit_compute_dtype is None:
            self.bnb_4bit_compute_dtype = torch.float32
        elif isinstance(bnb_4bit_compute_dtype, str):
            self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
        elif isinstance(bnb_4bit_compute_dtype, torch.dtype):
            self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype
        else:
            raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype")

        if bnb_4bit_quant_storage is None:
            self.bnb_4bit_quant_storage = torch.uint8
        elif isinstance(bnb_4bit_quant_storage, str):
            if bnb_4bit_quant_storage not in ["float16", "float32", "int8", "uint8", "float64", "bfloat16"]:
                raise ValueError(
                    "`bnb_4bit_quant_storage` must be a valid string (one of 'float16', 'float32', 'int8', 'uint8', 'float64', 'bfloat16') "
                )
            self.bnb_4bit_quant_storage = getattr(torch, bnb_4bit_quant_storage)
        elif isinstance(bnb_4bit_quant_storage, torch.dtype):
            self.bnb_4bit_quant_storage = bnb_4bit_quant_storage
        else:
            raise ValueError("bnb_4bit_quant_storage must be a string or a torch.dtype")

        if kwargs:
            logger.warning(f"Unused kwargs: {list(kwargs.keys())}. These kwargs are not used in {self.__class__}.")

        self.post_init()

    @property
    def load_in_4bit(self):
        return self._load_in_4bit

    @load_in_4bit.setter
    def load_in_4bit(self, value: bool):
        if not isinstance(value, bool):
            raise TypeError("load_in_4bit must be a boolean")

        if self.load_in_8bit and value:
            raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
        self._load_in_4bit = value

    @property
    def load_in_8bit(self):
        return self._load_in_8bit

    @load_in_8bit.setter
    def load_in_8bit(self, value: bool):
        if not isinstance(value, bool):
            raise TypeError("load_in_8bit must be a boolean")

        if self.load_in_4bit and value:
            raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
        self._load_in_8bit = value

    def post_init(self):
        r"""
        Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
        """
        if not isinstance(self.load_in_4bit, bool):
            raise TypeError("load_in_4bit must be a boolean")

        if not isinstance(self.load_in_8bit, bool):
            raise TypeError("load_in_8bit must be a boolean")

        if not isinstance(self.llm_int8_threshold, float):
            raise TypeError("llm_int8_threshold must be a float")

        if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list):
            raise TypeError("llm_int8_skip_modules must be a list of strings")
        if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool):
            raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean")

        if not isinstance(self.llm_int8_has_fp16_weight, bool):
            raise TypeError("llm_int8_has_fp16_weight must be a boolean")

        if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
            raise TypeError("bnb_4bit_compute_dtype must be torch.dtype")

        if not isinstance(self.bnb_4bit_quant_type, str):
            raise TypeError("bnb_4bit_quant_type must be a string")

        if not isinstance(self.bnb_4bit_use_double_quant, bool):
            raise TypeError("bnb_4bit_use_double_quant must be a boolean")

        if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
            "0.39.0"
        ):
            raise ValueError(
                "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version"
            )

    def is_quantizable(self):
        r"""
        Returns `True` if the model is quantizable, `False` otherwise.
        """
        return self.load_in_8bit or self.load_in_4bit

    def quantization_method(self):
        r"""
        This method returns the quantization method used for the model. If the model is not quantizable, it returns
        `None`.
        """
        if self.load_in_8bit:
            return "llm_int8"
        elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4":
            return "fp4"
        elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4":
            return "nf4"
        else:
            return None

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary. Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        output = copy.deepcopy(self.__dict__)
        output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1]
        output["bnb_4bit_quant_storage"] = str(output["bnb_4bit_quant_storage"]).split(".")[1]
        output["load_in_4bit"] = self.load_in_4bit
        output["load_in_8bit"] = self.load_in_8bit

        return output

    def __repr__(self):
        config_dict = self.to_dict()
        return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"

    def to_diff_dict(self) -> Dict[str, Any]:
        """
        Removes all attributes from config which correspond to the default config attributes for better readability and
        serializes to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        config_dict = self.to_dict()

        # get the default config dict
        default_config_dict = BitsAndBytesConfig().to_dict()

        serializable_config_dict = {}

        # only serialize values that differ from the default config
        for key, value in config_dict.items():
            if value != default_config_dict[key]:
                serializable_config_dict[key] = value

        return serializable_config_dict


class ExllamaVersion(int, Enum):
    ONE = 1
    TWO = 2


@dataclass
class GPTQConfig(QuantizationConfigMixin):
    """
    This is a wrapper class about all possible attributes and features that you can play with a model that has been
    loaded using `optimum` api for gptq quantization relying on auto_gptq backend.

    Args:
        bits (`int`):
            The number of bits to quantize to, supported numbers are (2, 3, 4, 8).
        tokenizer (`str` or `PreTrainedTokenizerBase`, *optional*):
            The tokenizer used to process the dataset. You can pass either:
                - A custom tokenizer object.
                - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
                - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
                    using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
        dataset (`Union[List[str]]`, *optional*):
            The dataset used for quantization. You can provide your own dataset in a list of string or just use the
            original datasets used in GPTQ paper ['wikitext2','c4','c4-new']
        group_size (`int`, *optional*, defaults to 128):
            The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization.
        damp_percent (`float`, *optional*, defaults to 0.1):
            The percent of the average Hessian diagonal to use for dampening. Recommended value is 0.1.
        desc_act (`bool`, *optional*, defaults to `False`):
            Whether to quantize columns in order of decreasing activation size. Setting it to False can significantly
            speed up inference but the perplexity may become slightly worse. Also known as act-order.
        sym (`bool`, *optional*, defaults to `True`):
            Whether to use symetric quantization.
        true_sequential (`bool`, *optional*, defaults to `True`):
            Whether to perform sequential quantization even within a single Transformer block. Instead of quantizing
            the entire block at once, we perform layer-wise quantization. As a result, each layer undergoes
            quantization using inputs that have passed through the previously quantized layers.
        use_cuda_fp16 (`bool`, *optional*, defaults to `False`):
            Whether or not to use optimized cuda kernel for fp16 model. Need to have model in fp16.
        model_seqlen (`int`, *optional*):
            The maximum sequence length that the model can take.
        block_name_to_quantize (`str`, *optional*):
            The transformers block name to quantize. If None, we will infer the block name using common patterns (e.g. model.layers)
        module_name_preceding_first_block (`List[str]`, *optional*):
            The layers that are preceding the first Transformer block.
        batch_size (`int`, *optional*, defaults to 1):
            The batch size used when processing the dataset
        pad_token_id (`int`, *optional*):
            The pad token id. Needed to prepare the dataset when `batch_size` > 1.
        use_exllama (`bool`, *optional*):
            Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4.
        max_input_length (`int`, *optional*):
            The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input
            length. It is specific to the exllama backend with act-order.
        exllama_config (`Dict[str, Any]`, *optional*):
            The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults
            to `{"version": 1}` if unset.
        cache_block_outputs (`bool`, *optional*, defaults to `True`):
            Whether to cache block outputs to reuse as inputs for the succeeding block.
        modules_in_block_to_quantize (`List[List[str]]`, *optional*):
            List of list of module names to quantize in the specified block. This argument is useful to exclude certain linear modules from being quantized.
            The block to quantize can be specified by setting `block_name_to_quantize`. We will quantize each list sequentially. If not set, we will quantize all linear layers.
            Example: `modules_in_block_to_quantize =[["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.o_proj"]]`.
            In this example, we will first quantize the q,k,v layers simultaneously since they are independent.
            Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get
            better results since it reflects the real input `self_attn.o_proj` will get when the model is quantized.
    """

    def __init__(
        self,
        bits: int,
        tokenizer: Any = None,
        dataset: Optional[Union[List[str], str]] = None,
        group_size: int = 128,
        damp_percent: float = 0.1,
        desc_act: bool = False,
        sym: bool = True,
        true_sequential: bool = True,
        use_cuda_fp16: bool = False,
        model_seqlen: Optional[int] = None,
        block_name_to_quantize: Optional[str] = None,
        module_name_preceding_first_block: Optional[List[str]] = None,
        batch_size: int = 1,
        pad_token_id: Optional[int] = None,
        use_exllama: Optional[bool] = None,
        max_input_length: Optional[int] = None,
        exllama_config: Optional[Dict[str, Any]] = None,
        cache_block_outputs: bool = True,
        modules_in_block_to_quantize: Optional[List[List[str]]] = None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.GPTQ
        self.bits = bits
        self.tokenizer = tokenizer
        self.dataset = dataset
        self.group_size = group_size
        self.damp_percent = damp_percent
        self.desc_act = desc_act
        self.sym = sym
        self.true_sequential = true_sequential
        self.use_cuda_fp16 = use_cuda_fp16
        self.model_seqlen = model_seqlen
        self.block_name_to_quantize = block_name_to_quantize
        self.module_name_preceding_first_block = module_name_preceding_first_block
        self.batch_size = batch_size
        self.pad_token_id = pad_token_id
        self.use_exllama = use_exllama
        self.max_input_length = max_input_length
        self.exllama_config = exllama_config
        self.disable_exllama = kwargs.pop("disable_exllama", None)
        self.cache_block_outputs = cache_block_outputs
        self.modules_in_block_to_quantize = modules_in_block_to_quantize
        self.post_init()

    def get_loading_attributes(self):
        attibutes_dict = copy.deepcopy(self.__dict__)
        loading_attibutes = ["disable_exllama", "use_exllama", "exllama_config", "use_cuda_fp16", "max_input_length"]
        loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes}
        return loading_attibutes_dict

    def post_init(self):
        r"""
        Safety checker that arguments are correct
        """
        if self.bits not in [2, 3, 4, 8]:
            raise ValueError(f"Only support quantization to [2,3,4,8] bits but found {self.bits}")
        if self.group_size != -1 and self.group_size <= 0:
            raise ValueError("group_size must be greater than 0 or equal to -1")
        if not (0 < self.damp_percent < 1):
            raise ValueError("damp_percent must between 0 and 1.")
        if self.dataset is not None:
            if isinstance(self.dataset, str):
                if self.dataset in ["ptb", "ptb-new"]:
                    raise ValueError(
                        f"""{self.dataset} dataset was deprecated. You can only choose between
                        ['wikitext2','c4','c4-new']"""
                    )
                if self.dataset not in ["wikitext2", "c4", "c4-new"]:
                    raise ValueError(
                        f"""You have entered a string value for dataset. You can only choose between
                        ['wikitext2','c4','c4-new'], but we found {self.dataset}"""
                    )
            elif not isinstance(self.dataset, list):
                raise ValueError(
                    f"""dataset needs to be either a list of string or a value in
                    ['wikitext2','c4','c4-new'], but we found {self.dataset}"""
                )

        if self.disable_exllama is None and self.use_exllama is None:
            # New default behaviour
            self.use_exllama = True
        elif self.disable_exllama is not None and self.use_exllama is None:
            # Follow pattern of old config
            logger.warning(
                "Using `disable_exllama` is deprecated and will be removed in version 4.37. Use `use_exllama` instead and specify the version with `exllama_config`."
                "The value of `use_exllama` will be overwritten by `disable_exllama` passed in `GPTQConfig` or stored in your config file."
            )
            self.use_exllama = not self.disable_exllama
            self.disable_exllama = None
        elif self.disable_exllama is not None and self.use_exllama is not None:
            # Only happens if user explicitly passes in both arguments
            raise ValueError("Cannot specify both `disable_exllama` and `use_exllama`. Please use just `use_exllama`")

        if self.exllama_config is None:
            self.exllama_config = {"version": ExllamaVersion.ONE}
        else:
            if "version" not in self.exllama_config:
                raise ValueError("`exllama_config` needs to have a `version` key.")
            elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]:
                exllama_version = self.exllama_config["version"]
                raise ValueError(
                    f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}"
                )

        if self.bits == 4 and self.use_exllama:
            if self.exllama_config["version"] == ExllamaVersion.ONE:
                logger.info(
                    "You have activated exllama backend. Note that you can get better inference "
                    "speed using exllamav2 kernel by setting `exllama_config`."
                )
            elif self.exllama_config["version"] == ExllamaVersion.TWO:
                optimum_version = version.parse(importlib.metadata.version("optimum"))
                autogptq_version = version.parse(importlib.metadata.version("auto_gptq"))
                if optimum_version <= version.parse("1.13.2") or autogptq_version <= version.parse("0.4.2"):
                    raise ValueError(
                        f"You need optimum > 1.13.2 and auto-gptq > 0.4.2 . Make sure to have that version installed - detected version : optimum {optimum_version} and autogptq {autogptq_version}"
                    )
        if self.modules_in_block_to_quantize is not None:
            optimum_version = version.parse(importlib.metadata.version("optimum"))
            if optimum_version < version.parse("1.15.0"):
                raise ValueError(
                    "You current version of `optimum` does not support `modules_in_block_to_quantize` quantization argument, please upgrade `optimum` package to a version superior than 1.15.0 ."
                )

    def to_dict(self):
        config_dict = super().to_dict()
        config_dict.pop("disable_exllama", None)
        return config_dict

    def to_dict_optimum(self):
        """
        Get compatible dict for optimum gptq config
        """
        quant_dict = self.to_dict()
        # make it compatible with optimum config
        quant_dict["disable_exllama"] = not self.use_exllama
        return quant_dict

    @classmethod
    def from_dict_optimum(cls, config_dict):
        """
        Get compatible class with optimum gptq config dict
        """

        if "disable_exllama" in config_dict:
            config_dict["use_exllama"] = not config_dict["disable_exllama"]
            # switch to None to not trigger the warning
            config_dict["disable_exllama"] = None

        config = cls(**config_dict)
        return config


@dataclass
class AwqConfig(QuantizationConfigMixin):
    """
    This is a wrapper class about all possible attributes and features that you can play with a model that has been
    loaded using `auto-awq` library awq quantization relying on auto_awq backend.

    Args:
        bits (`int`, *optional*, defaults to 4):
            The number of bits to quantize to.
        group_size (`int`, *optional*, defaults to 128):
            The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization.
        zero_point (`bool`, *optional*, defaults to `True`):
            Whether to use zero point quantization.
        version (`AWQLinearVersion`, *optional*, defaults to `AWQLinearVersion.GEMM`):
            The version of the quantization algorithm to use. GEMM is better for big batch_size (e.g. >= 8) otherwise,
            GEMV is better (e.g. < 8 ). GEMM models are compatible with Exllama kernels.
        backend (`AwqBackendPackingMethod`, *optional*, defaults to `AwqBackendPackingMethod.AUTOAWQ`):
            The quantization backend. Some models might be quantized using `llm-awq` backend. This is useful for users
            that quantize their own models using `llm-awq` library.
        do_fuse (`bool`, *optional*, defaults to `False`):
            Whether to fuse attention and mlp layers together for faster inference
        fuse_max_seq_len (`int`, *optional*):
            The Maximum sequence length to generate when using fusing.
        modules_to_fuse (`dict`, *optional*, default to `None`):
            Overwrite the natively supported fusing scheme with the one specified by the users.
        modules_to_not_convert (`list`, *optional*, default to `None`):
            The list of modules to not quantize, useful for quantizing models that explicitly require to have
            some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers).
            Note you cannot quantize directly with transformers, please refer to `AutoAWQ` documentation for quantizing HF models.
        exllama_config (`Dict[str, Any]`, *optional*):
            You can specify the version of the exllama kernel through the `version` key, the maximum sequence
            length through the `max_input_len` key, and the maximum batch size through the `max_batch_size` key.
            Defaults to `{"version": 2, "max_input_len": 2048, "max_batch_size": 8}` if unset.
    """

    def __init__(
        self,
        bits: int = 4,
        group_size: int = 128,
        zero_point: bool = True,
        version: AWQLinearVersion = AWQLinearVersion.GEMM,
        backend: AwqBackendPackingMethod = AwqBackendPackingMethod.AUTOAWQ,
        do_fuse: Optional[bool] = None,
        fuse_max_seq_len: Optional[int] = None,
        modules_to_fuse: Optional[dict] = None,
        modules_to_not_convert: Optional[List] = None,
        exllama_config: Optional[Dict[str, int]] = None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.AWQ

        self.bits = bits
        self.group_size = group_size
        self.zero_point = zero_point
        self.version = version
        self.backend = backend
        self.fuse_max_seq_len = fuse_max_seq_len
        self.modules_to_not_convert = modules_to_not_convert
        self.exllama_config = exllama_config

        self.modules_to_fuse = modules_to_fuse
        if do_fuse is None:
            self.do_fuse = modules_to_fuse is not None and len(modules_to_fuse) > 0
        else:
            self.do_fuse = do_fuse
        self.fuse_max_seq_len = fuse_max_seq_len

        self.post_init()

    def post_init(self):
        r"""
        Safety checker that arguments are correct
        """
        if self.backend not in [AwqBackendPackingMethod.AUTOAWQ, AwqBackendPackingMethod.LLMAWQ]:
            raise ValueError(
                f"Only supported quantization backends in {AwqBackendPackingMethod.AUTOAWQ} and {AwqBackendPackingMethod.LLMAWQ} - not recognized backend {self.backend}"
            )

        self.version = AWQLinearVersion.from_str(self.version)
        if self.version not in [
            AWQLinearVersion.GEMM,
            AWQLinearVersion.GEMV,
            AWQLinearVersion.EXLLAMA,
            AWQLinearVersion.IPEX,
        ]:
            raise ValueError(
                f"Only supported versions are in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV, AWQLinearVersion.EXLLAMA, AWQLinearVersion.IPEX] - not recognized version {self.version}"
            )

        if self.backend == AwqBackendPackingMethod.LLMAWQ:
            compute_capability = torch.cuda.get_device_capability()
            major, minor = compute_capability
            if major < 8:
                raise ValueError("LLM-AWQ backend is only supported on GPUs with compute capability >= 8.0")

        if self.do_fuse and self.fuse_max_seq_len is None:
            raise ValueError(
                "You cannot enable fused modules without specifying a `fuse_max_seq_len`, make sure to pass a valid `fuse_max_seq_len` for your usecase"
            )

        if self.do_fuse:
            awq_version_supports_fusing = False
            MIN_AWQ_VERSION = "0.1.7"
            if is_auto_awq_available():
                awq_version_supports_fusing = version.parse(importlib.metadata.version("autoawq")) >= version.parse(
                    MIN_AWQ_VERSION
                )

            if not awq_version_supports_fusing:
                raise ValueError(
                    f"You current version of `autoawq` does not support module fusing, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}."
                )

        if self.modules_to_not_convert is not None:
            awq_version_supports_non_conversion = False
            MIN_AWQ_VERSION = "0.1.8"
            if is_auto_awq_available():
                awq_version_supports_non_conversion = version.parse(
                    importlib.metadata.version("autoawq")
                ) >= version.parse(MIN_AWQ_VERSION)

            if not awq_version_supports_non_conversion:
                raise ValueError(
                    f"You current version of `autoawq` does not support module quantization skipping, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}."
                )

        if self.do_fuse and self.modules_to_fuse is not None:
            required_keys = [
                "hidden_size",
                "num_attention_heads",
                "num_key_value_heads",
                "mlp",
                "attention",
                "layernorm",
                "use_alibi",
            ]
            if not all(key in self.modules_to_fuse for key in required_keys):
                raise ValueError(
                    f"Required fields are missing in the fusing mapping, required fields are {required_keys}"
                )

        if self.version == AWQLinearVersion.EXLLAMA:
            awq_version_supports_exllama = False
            MIN_AWQ_VERSION = "0.2.0"
            if is_auto_awq_available():
                awq_version_supports_exllama = version.parse(importlib.metadata.version("autoawq")) >= version.parse(
                    MIN_AWQ_VERSION
                )

            if not awq_version_supports_exllama:
                raise ValueError(
                    f"You current version of `autoawq` does not support exllama backend, "
                    f"please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}."
                )

            if self.exllama_config is None:
                self.exllama_config = {"version": ExllamaVersion.TWO, "max_input_len": 2048, "max_batch_size": 8}
            else:
                if "version" not in self.exllama_config:
                    raise ValueError("`exllama_config` needs to have a `version` key.")
                elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]:
                    exllama_version = self.exllama_config["version"]
                    raise ValueError(
                        f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}"
                    )

    def get_loading_attributes(self):
        attibutes_dict = copy.deepcopy(self.__dict__)
        loading_attibutes = ["version", "do_fuse", "modules_to_fuse", "fuse_max_seq_len", "exllama_config"]
        loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes}
        return loading_attibutes_dict


@dataclass
class AqlmConfig(QuantizationConfigMixin):
    """
    This is a wrapper class about `aqlm` parameters.

    Args:
        in_group_size (`int`, *optional*, defaults to 8):
            The group size along the input dimension.
        out_group_size (`int`, *optional*, defaults to 1):
            The group size along the output dimension. It's recommended to always use 1.
        num_codebooks (`int`, *optional*, defaults to 1):
            Number of codebooks for the Additive Quantization procedure.
        nbits_per_codebook (`int`, *optional*, defaults to 16):
            Number of bits encoding a single codebook vector. Codebooks size is 2**nbits_per_codebook.
        linear_weights_not_to_quantize (`Optional[List[str]]`, *optional*):
            List of full paths of `nn.Linear` weight parameters that shall not be quantized.
        kwargs (`Dict[str, Any]`, *optional*):
            Additional parameters from which to initialize the configuration object.
    """

    def __init__(
        self,
        in_group_size: int = 8,
        out_group_size: int = 1,
        num_codebooks: int = 1,
        nbits_per_codebook: int = 16,
        linear_weights_not_to_quantize: Optional[List[str]] = None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.AQLM
        self.in_group_size = in_group_size
        self.out_group_size = out_group_size
        self.num_codebooks = num_codebooks
        self.nbits_per_codebook = nbits_per_codebook
        self.linear_weights_not_to_quantize = linear_weights_not_to_quantize

        self.post_init()

    def post_init(self):
        r"""
        Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
        """
        if not isinstance(self.in_group_size, int):
            raise TypeError("in_group_size must be a float")
        if not isinstance(self.out_group_size, int):
            raise TypeError("out_group_size must be a float")
        if not isinstance(self.num_codebooks, int):
            raise TypeError("num_codebooks must be a float")
        if not isinstance(self.nbits_per_codebook, int):
            raise TypeError("nbits_per_codebook must be a float")

        if self.linear_weights_not_to_quantize is not None and not isinstance(
            self.linear_weights_not_to_quantize, list
        ):
            raise ValueError("linear_weights_not_to_quantize must be a list of strings")

        if self.linear_weights_not_to_quantize is None:
            self.linear_weights_not_to_quantize = []


@dataclass
class QuantoConfig(QuantizationConfigMixin):
    """
    This is a wrapper class about all possible attributes and features that you can play with a model that has been
    loaded using `quanto`.

    Args:
        weights (`str`, *optional*, defaults to `"int8"`):
            The target dtype for the weights after quantization. Supported values are ("float8","int8","int4","int2")
        activations (`str`, *optional*):
            The target dtype for the activations after quantization. Supported values are (None,"int8","float8")
        modules_to_not_convert (`list`, *optional*, default to `None`):
            The list of modules to not quantize, useful for quantizing models that explicitly require to have
            some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers).
    """

    def __init__(
        self,
        weights="int8",
        activations=None,
        modules_to_not_convert: Optional[List] = None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.QUANTO
        self.weights = weights
        self.activations = activations
        self.modules_to_not_convert = modules_to_not_convert
        self.post_init()

    def post_init(self):
        r"""
        Safety checker that arguments are correct
        """
        accepted_weights = ["float8", "int8", "int4", "int2"]
        accepted_activations = [None, "int8", "float8"]
        if self.weights not in accepted_weights:
            raise ValueError(f"Only support weights in {accepted_weights} but found {self.weights}")
        if self.activations not in accepted_activations:
            raise ValueError(f"Only support weights in {accepted_activations} but found {self.activations}")


@dataclass
class EetqConfig(QuantizationConfigMixin):
    """
    This is a wrapper class about all possible attributes and features that you can play with a model that has been
    loaded using `eetq`.

    Args:
        weights (`str`, *optional*, defaults to `"int8"`):
            The target dtype for the weights. Supported value is only "int8"
        modules_to_not_convert (`list`, *optional*, default to `None`):
            The list of modules to not quantize, useful for quantizing models that explicitly require to have
            some modules left in their original precision.
    """

    def __init__(
        self,
        weights: str = "int8",
        modules_to_not_convert: Optional[List] = None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.EETQ
        self.weights = weights
        self.modules_to_not_convert = modules_to_not_convert
        self.post_init()

    def post_init(self):
        r"""
        Safety checker that arguments are correct
        """
        accepted_weights = ["int8"]
        if self.weights not in accepted_weights:
            raise ValueError(f"Only support weights in {accepted_weights} but found {self.weights}")


class CompressedTensorsConfig(QuantizationConfigMixin):
    """
    This is a wrapper class that handles compressed-tensors quantization config options.
    It is a wrapper around `compressed_tensors.QuantizationConfig`
    Args:
        config_groups (`typing.Dict[str, typing.Union[ForwardRef('QuantizationScheme'), typing.List[str]]]`, *optional*):
            dictionary mapping group name to a quantization scheme definition
        format (`str`, *optional*, defaults to `"dense"`):
            format the model is represented as
        quantization_status (`QuantizationStatus`, *optional*, defaults to `"initialized"`):
            status of model in the quantization lifecycle, ie 'initialized', 'calibration', 'frozen'
        kv_cache_scheme (`typing.Union[QuantizationArgs, NoneType]`, *optional*):
            specifies quantization of the kv cache. If None, kv cache is not quantized.
        global_compression_ratio (`typing.Union[float, NoneType]`, *optional*):
            0-1 float percentage of model compression
        ignore (`typing.Union[typing.List[str], NoneType]`, *optional*):
            layer names or types to not quantize, supports regex prefixed by 're:'
        sparsity_config (`typing.Dict[str, typing.Any]`, *optional*):
            configuration for sparsity compression
        quant_method (`str`, *optional*, defaults to `"compressed-tensors"`):
            do not override, should be compressed-tensors
    """

    def __init__(
        self,
        config_groups: Dict[str, Union["QuantizationScheme", List[str]]] = None,  # noqa: F821
        format: str = "dense",
        quantization_status: "QuantizationStatus" = "initialized",  # noqa: F821
        kv_cache_scheme: Optional["QuantizationArgs"] = None,  # noqa: F821
        global_compression_ratio: Optional[float] = None,
        ignore: Optional[List[str]] = None,
        sparsity_config: Dict[str, Any] = None,
        quant_method: str = "compressed-tensors",
        **kwargs,
    ):
        from compressed_tensors import QuantizationConfig
        from compressed_tensors.config import SparsityCompressionConfig

        self.quantization_config = None
        self.sparsity_config = None

        # parse from dict to load nested QuantizationScheme objects
        if config_groups or kv_cache_scheme:
            self.quantization_config = QuantizationConfig.parse_obj(
                {
                    "config_groups": config_groups,
                    "quant_method": quant_method,
                    "format": format,
                    "quantization_status": quantization_status,
                    "kv_cache_scheme": kv_cache_scheme,
                    "global_compression_ratio": global_compression_ratio,
                    "ignore": ignore,
                    **kwargs,
                }
            )

        if sparsity_config:
            self.sparsity_config = SparsityCompressionConfig.load_from_registry(
                sparsity_config.get("format"), **sparsity_config
            )

        super().__init__(quant_method=QuantizationMethod.COMPRESSED_TENSORS)

    @classmethod
    def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs):
        """
        Instantiates a [`CompressedTensorsConfig`] from a Python dictionary of parameters.
        Optionally unwraps any args from the nested quantization_config

        Args:
            config_dict (`Dict[str, Any]`):
                Dictionary that will be used to instantiate the configuration object.
            return_unused_kwargs (`bool`,*optional*, defaults to `False`):
                Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in
                `PreTrainedModel`.
            kwargs (`Dict[str, Any]`):
                Additional parameters from which to initialize the configuration object.

        Returns:
            [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters.
        """
        if "quantization_config" in config_dict:
            config_dict = dict(
                sparsity_config=config_dict.get("sparsity_config"),
                **config_dict["quantization_config"],
            )

        return super().from_dict(config_dict, return_unused_kwargs=return_unused_kwargs, **kwargs)

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary. Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        quantization_config = self.quantization_config.dict() if self.quantization_config is not None else None
        sparsity_config = self.sparsity_config.dict() if self.sparsity_config is not None else None

        return {
            "quantization_config": quantization_config,
            "sparsity_config": sparsity_config,
        }

    def to_diff_dict(self) -> Dict[str, Any]:
        """
        Removes all attributes from config which correspond to the default config attributes for better readability and
        serializes to a Python dictionary.
        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        config_dict = self.to_dict()

        # get the default config dict
        default_config_dict = CompressedTensorsConfig().to_dict()

        serializable_config_dict = {}

        # only serialize values that differ from the default config
        for key, value in config_dict.items():
            if value != default_config_dict[key]:
                serializable_config_dict[key] = value

        return serializable_config_dict


@dataclass
class FbgemmFp8Config(QuantizationConfigMixin):
    """
    This is a wrapper class about all possible attributes and features that you can play with a model that has been
    loaded using fbgemm fp8 quantization.

    Args:
        activation_scale_ub (`float`, *optional*, defaults to 1200.0):
            The activation scale upper bound. This is used when quantizing the input activation.
        modules_to_not_convert (`list`, *optional*, default to `None`):
            The list of modules to not quantize, useful for quantizing models that explicitly require to have
            some modules left in their original precision.
    """

    def __init__(
        self,
        activation_scale_ub: float = 1200.0,
        modules_to_not_convert: Optional[List] = None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.FBGEMM_FP8
        self.activation_scale_ub = activation_scale_ub
        self.modules_to_not_convert = modules_to_not_convert

    def get_loading_attributes(self):
        attibutes_dict = copy.deepcopy(self.__dict__)
        loading_attibutes = ["activation_scale_ub"]
        loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes}
        return loading_attibutes_dict


@dataclass
class TorchAoConfig(QuantizationConfigMixin):
    """This is a config class for torchao quantization/sparsity techniques.

    Args:
        quant_type (`str`):
            The type of quantization we want to use, currently supporting: `int4_weight_only`, `int8_weight_only` and `int8_dynamic_activation_int8_weight`.
        modules_to_not_convert (`list`, *optional*, default to `None`):
            The list of modules to not quantize, useful for quantizing models that explicitly require to have
            some modules left in their original precision.
        kwargs (`Dict[str, Any]`, *optional*):
            The keyword arguments for the chosen type of quantization, for example, int4_weight_only quantization supports two keyword arguments
            `group_size` and `inner_k_tiles` currently. More API examples and documentation of arguments can be found in
            https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques

    Example:

    ```python
    quantization_config = TorchAoConfig("int4_weight_only", group_size=32)
    # int4_weight_only quant is only working with *torch.bfloat16* dtype right now
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
    ```
    """

    def __init__(self, quant_type: str, modules_to_not_convert: Optional[List] = None, **kwargs):
        self.quant_method = QuantizationMethod.TORCHAO
        self.quant_type = quant_type
        self.modules_to_not_convert = modules_to_not_convert
        # when we load from serailized config, "quant_type_kwargs" will be the key
        if "quant_type_kwargs" in kwargs:
            self.quant_type_kwargs = kwargs["quant_type_kwargs"]
        else:
            self.quant_type_kwargs = kwargs

        self.post_init()

    def post_init(self):
        r"""
        Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
        """
        if not version.parse(importlib.metadata.version("torchao")) >= version.parse("0.4.0"):
            raise ValueError("Requires torchao 0.4.0 version and above")

        _STR_TO_METHOD = self._get_torchao_quant_type_to_method()
        if self.quant_type not in _STR_TO_METHOD.keys():
            raise ValueError(
                f"Requested quantization type: {self.quant_type} is not supported yet, please add support in TorchAoConfig and TorchAoHfQuantizer."
            )

        method = _STR_TO_METHOD[self.quant_type]
        sig = signature(method)
        all_kwargs = [
            param.name
            for param in sig.parameters.values()
            if param.kind in [Parameter.KEYWORD_ONLY, Parameter.POSITIONAL_OR_KEYWORD]
        ]
        for k in self.quant_type_kwargs:
            if k not in all_kwargs:
                raise ValueError(
                    f"Unexpected keyword arg: {k} for API: {method}, accepted keyword args are: {all_kwargs}"
                )

    def _get_torchao_quant_type_to_method(self):
        if is_torchao_available():
            from torchao.quantization import (
                int4_weight_only,
                int8_dynamic_activation_int8_weight,
                int8_weight_only,
            )

            return {
                "int4_weight_only": int4_weight_only,
                "int8_weight_only": int8_weight_only,
                "int8_dynamic_activation_int8_weight": int8_dynamic_activation_int8_weight,
            }
        else:
            raise ValueError(
                "TorchAoConfig requires torchao to be installed, please install with `pip install torchao`"
            )

    def get_apply_tensor_subclass(self):
        _STR_TO_METHOD = self._get_torchao_quant_type_to_method()
        return _STR_TO_METHOD[self.quant_type](**self.quant_type_kwargs)

    def __repr__(self):
        return f"{self.quant_type}({', '.join(str(k) + '=' + str(v) for k, v in self.kwargs.items())})"


@dataclass
class BitNetConfig(QuantizationConfigMixin):
    def __init__(
        self,
        modules_to_not_convert: Optional[List] = None,
        **kwargs,
    ):
        self.quant_method = QuantizationMethod.BITNET
        self.modules_to_not_convert = modules_to_not_convert
        self.post_init()

    def post_init(self):
        r"""
        Safety checker that arguments are correct
        """
        pass