File size: 52,025 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processing saving/loading class for common processors.
"""

import copy
import inspect
import json
import os
import sys
import typing
import warnings
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union

import numpy as np
import typing_extensions

from .dynamic_module_utils import custom_object_save
from .image_utils import ChannelDimension, is_valid_image, is_vision_available


if is_vision_available():
    from .image_utils import PILImageResampling

from .tokenization_utils_base import (
    PaddingStrategy,
    PreTokenizedInput,
    PreTrainedTokenizerBase,
    TextInput,
    TruncationStrategy,
)
from .utils import (
    CHAT_TEMPLATE_NAME,
    PROCESSOR_NAME,
    PushToHubMixin,
    TensorType,
    add_model_info_to_auto_map,
    add_model_info_to_custom_pipelines,
    cached_file,
    copy_func,
    direct_transformers_import,
    download_url,
    is_offline_mode,
    is_remote_url,
    logging,
)


logger = logging.get_logger(__name__)

# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(Path(__file__).parent)


AUTO_TO_BASE_CLASS_MAPPING = {
    "AutoTokenizer": "PreTrainedTokenizerBase",
    "AutoFeatureExtractor": "FeatureExtractionMixin",
    "AutoImageProcessor": "ImageProcessingMixin",
}

if sys.version_info >= (3, 11):
    Unpack = typing.Unpack
else:
    Unpack = typing_extensions.Unpack


class TextKwargs(TypedDict, total=False):
    """
    Keyword arguments for text processing. For extended documentation, check out tokenization_utils_base methods and
    docstrings associated.

    Attributes:
        add_special_tokens (`bool`, *optional*)
            Whether or not to add special tokens when encoding the sequences.
        padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*)
            Activates and controls padding.
        truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*):
            Activates and controls truncation.
        max_length (`int`, *optional*):
            Controls the maximum length to use by one of the truncation/padding parameters.
        stride (`int`, *optional*):
            If set, the overflowing tokens will contain some tokens from the end of the truncated sequence.
        is_split_into_words (`bool`, *optional*):
            Whether or not the input is already pre-tokenized.
        pad_to_multiple_of (`int`, *optional*):
            If set, will pad the sequence to a multiple of the provided value.
        return_token_type_ids (`bool`, *optional*):
            Whether to return token type IDs.
        return_attention_mask (`bool`, *optional*):
            Whether to return the attention mask.
        return_overflowing_tokens (`bool`, *optional*):
            Whether or not to return overflowing token sequences.
        return_special_tokens_mask (`bool`, *optional*):
            Whether or not to return special tokens mask information.
        return_offsets_mapping (`bool`, *optional*):
            Whether or not to return `(char_start, char_end)` for each token.
        return_length (`bool`, *optional*):
            Whether or not to return the lengths of the encoded inputs.
        verbose (`bool`, *optional*):
            Whether or not to print more information and warnings.
        padding_side (`str`, *optional*):
            The side on which padding will be applied.
    """

    text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
    text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
    text_pair_target: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
    add_special_tokens: Optional[bool]
    padding: Union[bool, str, PaddingStrategy]
    truncation: Union[bool, str, TruncationStrategy]
    max_length: Optional[int]
    stride: Optional[int]
    is_split_into_words: Optional[bool]
    pad_to_multiple_of: Optional[int]
    return_token_type_ids: Optional[bool]
    return_attention_mask: Optional[bool]
    return_overflowing_tokens: Optional[bool]
    return_special_tokens_mask: Optional[bool]
    return_offsets_mapping: Optional[bool]
    return_length: Optional[bool]
    verbose: Optional[bool]
    padding_side: Optional[str]


class ImagesKwargs(TypedDict, total=False):
    """
    Keyword arguments for image processing. For extended documentation, check the appropriate ImageProcessor
    class methods and docstrings.

    Attributes:
        do_resize (`bool`, *optional*):
            Whether to resize the image.
        size (`Dict[str, int]`, *optional*):
            Resize the shorter side of the input to `size["shortest_edge"]`.
        size_divisor (`int`, *optional*):
            The size by which to make sure both the height and width can be divided.
        crop_size (`Dict[str, int]`, *optional*):
            Desired output size when applying center-cropping.
        resample (`PILImageResampling`, *optional*):
            Resampling filter to use if resizing the image.
        do_rescale (`bool`, *optional*):
            Whether to rescale the image by the specified scale `rescale_factor`.
        rescale_factor (`int` or `float`, *optional*):
            Scale factor to use if rescaling the image.
        do_normalize (`bool`, *optional*):
            Whether to normalize the image.
        image_mean (`float` or `List[float]`, *optional*):
            Mean to use if normalizing the image.
        image_std (`float` or `List[float]`, *optional*):
            Standard deviation to use if normalizing the image.
        do_pad (`bool`, *optional*):
            Whether to pad the image to the `(max_height, max_width)` of the images in the batch.
        pad_size (`Dict[str, int]`, *optional*):
            The size `{"height": int, "width" int}` to pad the images to.
        do_center_crop (`bool`, *optional*):
            Whether to center crop the image.
        data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format for the output image.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format for the input image.
    """

    do_resize: Optional[bool]
    size: Optional[Dict[str, int]]
    size_divisor: Optional[int]
    crop_size: Optional[Dict[str, int]]
    resample: Optional[Union["PILImageResampling", int]]
    do_rescale: Optional[bool]
    rescale_factor: Optional[float]
    do_normalize: Optional[bool]
    image_mean: Optional[Union[float, List[float]]]
    image_std: Optional[Union[float, List[float]]]
    do_pad: Optional[bool]
    pad_size: Optional[Dict[str, int]]
    do_center_crop: Optional[bool]
    data_format: Optional[ChannelDimension]
    input_data_format: Optional[Union[str, ChannelDimension]]


class VideosKwargs(TypedDict, total=False):
    """
    Keyword arguments for video processing.

    Attributes:
        do_resize (`bool`):
            Whether to resize the image.
        size (`Dict[str, int]`, *optional*):
            Resize the shorter side of the input to `size["shortest_edge"]`.
        size_divisor (`int`, *optional*):
            The size by which to make sure both the height and width can be divided.
        resample (`PILImageResampling`, *optional*):
            Resampling filter to use if resizing the image.
        do_rescale (`bool`, *optional*):
            Whether to rescale the image by the specified scale `rescale_factor`.
        rescale_factor (`int` or `float`, *optional*):
            Scale factor to use if rescaling the image.
        do_normalize (`bool`, *optional*):
            Whether to normalize the image.
        image_mean (`float` or `List[float]`, *optional*):
            Mean to use if normalizing the image.
        image_std (`float` or `List[float]`, *optional*):
            Standard deviation to use if normalizing the image.
        do_pad (`bool`, *optional*):
            Whether to pad the image to the `(max_height, max_width)` of the images in the batch.
        do_center_crop (`bool`, *optional*):
            Whether to center crop the image.
        data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format for the output image.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format for the input image.
    """

    do_resize: Optional[bool]
    size: Optional[Dict[str, int]]
    size_divisor: Optional[int]
    resample: Optional["PILImageResampling"]
    do_rescale: Optional[bool]
    rescale_factor: Optional[float]
    do_normalize: Optional[bool]
    image_mean: Optional[Union[float, List[float]]]
    image_std: Optional[Union[float, List[float]]]
    do_pad: Optional[bool]
    do_center_crop: Optional[bool]
    data_format: Optional[ChannelDimension]
    input_data_format: Optional[Union[str, ChannelDimension]]


class AudioKwargs(TypedDict, total=False):
    """
    Keyword arguments for audio processing.

    Attributes:
        sampling_rate (`int`, *optional*):
            The sampling rate at which the `raw_speech` input was sampled.
        raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
            The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
            values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
            stereo, i.e. single float per timestep.
        padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding
            index) among:

            - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                sequence if provided).
            - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                acceptable input length for the model if that argument is not provided.
            - `False` or `'do_not_pad'`
        max_length (`int`, *optional*):
            Maximum length of the returned list and optionally padding length (see above).
        truncation (`bool`, *optional*):
            Activates truncation to cut input sequences longer than *max_length* to *max_length*.
        pad_to_multiple_of (`int`, *optional*):
            If set, will pad the sequence to a multiple of the provided value.
        return_attention_mask (`bool`, *optional*):
            Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`.
    """

    sampling_rate: Optional[int]
    raw_speech: Optional[Union["np.ndarray", List[float], List["np.ndarray"], List[List[float]]]]
    padding: Optional[Union[bool, str, PaddingStrategy]]
    max_length: Optional[int]
    truncation: Optional[bool]
    pad_to_multiple_of: Optional[int]
    return_attention_mask: Optional[bool]


class CommonKwargs(TypedDict, total=False):
    return_tensors: Optional[Union[str, TensorType]]


class ProcessingKwargs(TextKwargs, ImagesKwargs, VideosKwargs, AudioKwargs, CommonKwargs, total=False):
    """
    Base class for kwargs passing to processors.
    A model should have its own `ModelProcessorKwargs` class that inherits from `ProcessingKwargs` to provide:
        1) Additional typed keys and that this model requires to process inputs.
        2) Default values for existing keys under a `_defaults` attribute.
    New keys have to be defined as follows to ensure type hinting is done correctly.

    ```python
    # adding a new image kwarg for this model
    class ModelImagesKwargs(ImagesKwargs, total=False):
        new_image_kwarg: Optional[bool]

    class ModelProcessorKwargs(ProcessingKwargs, total=False):
        images_kwargs: ModelImagesKwargs
        _defaults = {
            "images_kwargs: {
                "new_image_kwarg": False,
            }
            "text_kwargs": {
                "padding": "max_length",
            },
        }

    ```

    For Python 3.8 compatibility, when inheriting from this class and overriding one of the kwargs,
    you need to manually update the __annotations__ dictionary. This can be done as follows:

    ```python
    class CustomProcessorKwargs(ProcessingKwargs, total=False):
        images_kwargs: CustomImagesKwargs

    CustomProcessorKwargs.__annotations__["images_kwargs"] = CustomImagesKwargs  # python 3.8 compatibility
    ```python

    """

    common_kwargs: CommonKwargs = {
        **CommonKwargs.__annotations__,
    }
    text_kwargs: TextKwargs = {
        **TextKwargs.__annotations__,
    }
    images_kwargs: ImagesKwargs = {
        **ImagesKwargs.__annotations__,
    }
    videos_kwargs: VideosKwargs = {
        **VideosKwargs.__annotations__,
    }
    audio_kwargs: AudioKwargs = {
        **AudioKwargs.__annotations__,
    }


class ProcessorMixin(PushToHubMixin):
    """
    This is a mixin used to provide saving/loading functionality for all processor classes.
    """

    attributes = ["feature_extractor", "tokenizer"]
    optional_attributes = ["chat_template"]
    optional_call_args: List[str] = []
    # Names need to be attr_class for attr in attributes
    feature_extractor_class = None
    tokenizer_class = None
    _auto_class = None
    valid_kwargs: List[str] = []

    # args have to match the attributes class attribute
    def __init__(self, *args, **kwargs):
        # First, extract optional attributes from kwargs if present
        # Optional attributes can never be positional arguments
        for optional_attribute in self.optional_attributes:
            setattr(self, optional_attribute, kwargs.pop(optional_attribute, None))
        # Sanitize args and kwargs
        for key in kwargs:
            if key not in self.attributes:
                raise TypeError(f"Unexpected keyword argument {key}.")
        for arg, attribute_name in zip(args, self.attributes):
            if attribute_name in kwargs:
                raise TypeError(f"Got multiple values for argument {attribute_name}.")
            else:
                kwargs[attribute_name] = arg

        if len(kwargs) != len(self.attributes):
            raise ValueError(
                f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got "
                f"{len(args)} arguments instead."
            )

        # Check each arg is of the proper class (this will also catch a user initializing in the wrong order)
        for attribute_name, arg in kwargs.items():
            class_name = getattr(self, f"{attribute_name}_class")
            # Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class.
            class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name)
            if isinstance(class_name, tuple):
                proper_class = tuple(getattr(transformers_module, n) for n in class_name if n is not None)
            else:
                proper_class = getattr(transformers_module, class_name)

            if not isinstance(arg, proper_class):
                raise TypeError(
                    f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected."
                )

            setattr(self, attribute_name, arg)

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this processor instance.
        """
        output = copy.deepcopy(self.__dict__)

        # Get the kwargs in `__init__`.
        sig = inspect.signature(self.__init__)
        # Only save the attributes that are presented in the kwargs of `__init__`.
        attrs_to_save = sig.parameters
        # Don't save attributes like `tokenizer`, `image processor` etc.
        attrs_to_save = [x for x in attrs_to_save if x not in self.__class__.attributes]
        # extra attributes to be kept
        attrs_to_save += ["auto_map"]

        output = {k: v for k, v in output.items() if k in attrs_to_save}

        output["processor_class"] = self.__class__.__name__

        if "tokenizer" in output:
            del output["tokenizer"]
        if "image_processor" in output:
            del output["image_processor"]
        if "feature_extractor" in output:
            del output["feature_extractor"]
        if "chat_template" in output:
            del output["chat_template"]

        # Some attributes have different names but containing objects that are not simple strings
        output = {
            k: v
            for k, v in output.items()
            if not (isinstance(v, PushToHubMixin) or v.__class__.__name__ == "BeamSearchDecoderCTC")
        }

        return output

    def to_json_string(self) -> str:
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
        """
        dictionary = self.to_dict()

        return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this processor instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            writer.write(self.to_json_string())

    def __repr__(self):
        attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes]
        attributes_repr = "\n".join(attributes_repr)
        return f"{self.__class__.__name__}:\n{attributes_repr}\n\n{self.to_json_string()}"

    def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs):
        """
        Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
        can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.

        <Tip>

        This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
        [`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the
        methods above for more information.

        </Tip>

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
                be created if it does not exist).
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        use_auth_token = kwargs.pop("use_auth_token", None)

        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
            )
            if kwargs.get("token", None) is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            kwargs["token"] = use_auth_token

        os.makedirs(save_directory, exist_ok=True)

        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = self._create_repo(repo_id, **kwargs)
            files_timestamps = self._get_files_timestamps(save_directory)
        # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            attrs = [getattr(self, attribute_name) for attribute_name in self.attributes]
            configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs]
            configs.append(self)
            custom_object_save(self, save_directory, config=configs)

        for attribute_name in self.attributes:
            attribute = getattr(self, attribute_name)
            # Include the processor class in the attribute config so this processor can then be reloaded with the
            # `AutoProcessor` API.
            if hasattr(attribute, "_set_processor_class"):
                attribute._set_processor_class(self.__class__.__name__)
            attribute.save_pretrained(save_directory)

        if self._auto_class is not None:
            # We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
            for attribute_name in self.attributes:
                attribute = getattr(self, attribute_name)
                if isinstance(attribute, PreTrainedTokenizerBase):
                    del attribute.init_kwargs["auto_map"]

        # If we save using the predefined names, we can load using `from_pretrained`
        # plus we save chat_template in its own file
        output_processor_file = os.path.join(save_directory, PROCESSOR_NAME)
        output_chat_template_file = os.path.join(save_directory, CHAT_TEMPLATE_NAME)

        processor_dict = self.to_dict()
        # Save `chat_template` in its own file. We can't get it from `processor_dict` as we popped it in `to_dict`
        # to avoid serializing chat template in json config file. So let's get it from `self` directly
        if self.chat_template is not None:
            chat_template_json_string = (
                json.dumps({"chat_template": self.chat_template}, indent=2, sort_keys=True) + "\n"
            )
            with open(output_chat_template_file, "w", encoding="utf-8") as writer:
                writer.write(chat_template_json_string)
            logger.info(f"chat template saved in {output_chat_template_file}")

        # For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and
        # `auto_map` is not specified.
        if set(processor_dict.keys()) != {"processor_class"}:
            self.to_json_file(output_processor_file)
            logger.info(f"processor saved in {output_processor_file}")

        if push_to_hub:
            self._upload_modified_files(
                save_directory,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
                token=kwargs.get("token"),
            )

        if set(processor_dict.keys()) == {"processor_class"}:
            return []
        return [output_processor_file]

    @classmethod
    def get_processor_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        """
        From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
        processor of type [`~processing_utils.ProcessingMixin`] using `from_args_and_dict`.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.

        Returns:
            `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the processor object.
        """
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", None)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", "")

        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        is_local = os.path.isdir(pretrained_model_name_or_path)
        if os.path.isdir(pretrained_model_name_or_path):
            processor_file = os.path.join(pretrained_model_name_or_path, PROCESSOR_NAME)
            chat_template_file = os.path.join(pretrained_model_name_or_path, "chat_template.json")

        if os.path.isfile(pretrained_model_name_or_path):
            resolved_processor_file = pretrained_model_name_or_path
            # cant't load chat-template when given a file as pretrained_model_name_or_path
            resolved_chat_template_file = None
            is_local = True
        elif is_remote_url(pretrained_model_name_or_path):
            processor_file = pretrained_model_name_or_path
            resolved_processor_file = download_url(pretrained_model_name_or_path)
            # can't load chat-template when given a file url as pretrained_model_name_or_path
            resolved_chat_template_file = None
        else:
            processor_file = PROCESSOR_NAME
            chat_template_file = CHAT_TEMPLATE_NAME
            try:
                # Load from local folder or from cache or download from model Hub and cache
                resolved_processor_file = cached_file(
                    pretrained_model_name_or_path,
                    processor_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=False,
                )

                # Load chat template from a separate json if exists
                # because making it part of processor-config break BC.
                # Processors in older version do not accept any kwargs
                resolved_chat_template_file = cached_file(
                    pretrained_model_name_or_path,
                    chat_template_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    token=token,
                    user_agent=user_agent,
                    revision=revision,
                    subfolder=subfolder,
                    _raise_exceptions_for_missing_entries=False,
                )
            except EnvironmentError:
                # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
                # the original exception.
                raise
            except Exception:
                # For any other exception, we throw a generic error.
                raise EnvironmentError(
                    f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
                    " it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                    f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
                    f" directory containing a {PROCESSOR_NAME} file"
                )

        # Add chat template as kwarg before returning because most models don't have processor config
        chat_template = None
        if resolved_chat_template_file is not None:
            with open(resolved_chat_template_file, "r", encoding="utf-8") as reader:
                text = reader.read()
            chat_template = json.loads(text)["chat_template"]
            kwargs["chat_template"] = chat_template

        # Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
        # updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
        # (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
        # However, for models added in the future, we won't get the expected error if this file is missing.
        if resolved_processor_file is None:
            return {}, kwargs

        try:
            # Load processor dict
            with open(resolved_processor_file, "r", encoding="utf-8") as reader:
                text = reader.read()
            processor_dict = json.loads(text)

        except json.JSONDecodeError:
            raise EnvironmentError(
                f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
            )

        if is_local:
            logger.info(f"loading configuration file {resolved_processor_file}")
        else:
            logger.info(f"loading configuration file {processor_file} from cache at {resolved_processor_file}")

        if "chat_template" in processor_dict and processor_dict["chat_template"] is not None:
            logger.warning_once(
                "Chat templates should be in a 'chat_template.json' file but found key='chat_template' "
                "in the processor's config. Make sure to move your template to its own file."
            )

        if not is_local:
            if "auto_map" in processor_dict:
                processor_dict["auto_map"] = add_model_info_to_auto_map(
                    processor_dict["auto_map"], pretrained_model_name_or_path
                )
            if "custom_pipelines" in processor_dict:
                processor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
                    processor_dict["custom_pipelines"], pretrained_model_name_or_path
                )

        return processor_dict, kwargs

    @classmethod
    def from_args_and_dict(cls, args, processor_dict: Dict[str, Any], **kwargs):
        """
        Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters.

        Args:
            processor_dict (`Dict[str, Any]`):
                Dictionary that will be used to instantiate the processor object. Such a dictionary can be
                retrieved from a pretrained checkpoint by leveraging the
                [`~processing_utils.ProcessingMixin.to_dict`] method.
            kwargs (`Dict[str, Any]`):
                Additional parameters from which to initialize the processor object.

        Returns:
            [`~processing_utils.ProcessingMixin`]: The processor object instantiated from those
            parameters.
        """
        processor_dict = processor_dict.copy()
        return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
        chat_template = kwargs.pop("chat_template", None)

        # We have to pop up some unused (but specific) kwargs and then validate that it doesn't contain unused kwargs
        # If we don't pop, some specific kwargs will raise a warning
        if "processor_class" in processor_dict:
            del processor_dict["processor_class"]

        if "auto_map" in processor_dict:
            del processor_dict["auto_map"]

        unused_kwargs = cls.validate_init_kwargs(processor_config=processor_dict, valid_kwargs=cls.valid_kwargs)
        processor = cls(*args, **processor_dict)
        if chat_template is not None:
            setattr(processor, "chat_template", chat_template)

        # Update processor with kwargs if needed
        for key in set(kwargs.keys()):
            if hasattr(processor, key):
                setattr(processor, key, kwargs.pop(key))

        kwargs.update(unused_kwargs)
        logger.info(f"Processor {processor}")
        if return_unused_kwargs:
            return processor, kwargs
        else:
            return processor

    def _merge_kwargs(
        self,
        ModelProcessorKwargs: ProcessingKwargs,
        tokenizer_init_kwargs: Optional[Dict] = None,
        **kwargs,
    ) -> Dict[str, Dict]:
        """
        Method to merge dictionaries of kwargs cleanly separated by modality within a Processor instance.
        The order of operations is as follows:
            1) kwargs passed as before have highest priority to preserve BC.
                ```python
                high_priority_kwargs = {"crop_size" = {"height": 222, "width": 222}, "padding" = "max_length"}
                processor(..., **high_priority_kwargs)
                ```
            2) kwargs passed as modality-specific kwargs have second priority. This is the recommended API.
                ```python
                processor(..., text_kwargs={"padding": "max_length"}, images_kwargs={"crop_size": {"height": 222, "width": 222}}})
                ```
            3) kwargs passed during instantiation of a modality processor have fourth priority.
                ```python
                tokenizer = tokenizer_class(..., {"padding": "max_length"})
                image_processor = image_processor_class(...)
                processor(tokenizer, image_processor) # will pass max_length unless overriden by kwargs at call
                ```
            4) defaults kwargs specified at processor level have lowest priority.
                ```python
                class MyProcessingKwargs(ProcessingKwargs, CommonKwargs, TextKwargs, ImagesKwargs, total=False):
                    _defaults = {
                        "text_kwargs": {
                            "padding": "max_length",
                            "max_length": 64,
                        },
                    }
                ```
        Args:
            ModelProcessorKwargs (`ProcessingKwargs`):
                Typed dictionary of kwargs specifically required by the model passed.
            tokenizer_init_kwargs (`Dict`, *optional*):
                Dictionary of kwargs the tokenizer was instantiated with and need to take precedence over defaults.

        Returns:
            output_kwargs (`Dict`):
                Dictionary of per-modality kwargs to be passed to each modality-specific processor.

        """
        # Initialize dictionaries
        output_kwargs = {
            "text_kwargs": {},
            "images_kwargs": {},
            "audio_kwargs": {},
            "videos_kwargs": {},
            "common_kwargs": {},
        }

        default_kwargs = {
            "text_kwargs": {},
            "images_kwargs": {},
            "audio_kwargs": {},
            "videos_kwargs": {},
            "common_kwargs": {},
        }

        used_keys = set()

        # get defaults from set model processor kwargs if they exist
        for modality in default_kwargs:
            default_kwargs[modality] = ModelProcessorKwargs._defaults.get(modality, {}).copy()
            # update defaults with arguments from tokenizer init
            for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
                # init with tokenizer init kwargs if necessary
                if modality_key in tokenizer_init_kwargs:
                    value = (
                        getattr(self.tokenizer, modality_key)
                        if hasattr(self.tokenizer, modality_key)
                        else tokenizer_init_kwargs[modality_key]
                    )
                    default_kwargs[modality][modality_key] = value
        # now defaults kwargs are updated with the tokenizers defaults.
        # pass defaults to output dictionary
        output_kwargs.update(default_kwargs)

        # update modality kwargs with passed kwargs
        non_modality_kwargs = set(kwargs) - set(output_kwargs)
        for modality in output_kwargs:
            for modality_key in ModelProcessorKwargs.__annotations__[modality].__annotations__.keys():
                # check if we received a structured kwarg dict or not to handle it correctly
                if modality in kwargs:
                    kwarg_value = kwargs[modality].pop(modality_key, "__empty__")
                    # check if this key was passed as a flat kwarg.
                    if kwarg_value != "__empty__" and modality_key in non_modality_kwargs:
                        raise ValueError(
                            f"Keyword argument {modality_key} was passed two times:\n"
                            f"in a dictionary for {modality} and as a **kwarg."
                        )
                elif modality_key in kwargs:
                    # we get a modality_key instead of popping it because modality-specific processors
                    # can have overlapping kwargs
                    kwarg_value = kwargs.get(modality_key, "__empty__")
                else:
                    kwarg_value = "__empty__"
                if kwarg_value != "__empty__":
                    output_kwargs[modality][modality_key] = kwarg_value
                    used_keys.add(modality_key)

        # Determine if kwargs is a flat dictionary or contains nested dictionaries
        if any(key in default_kwargs for key in kwargs):
            # kwargs is dictionary-based, and some keys match modality names
            for modality, subdict in kwargs.items():
                if modality in default_kwargs:
                    for subkey, subvalue in subdict.items():
                        if subkey not in used_keys:
                            output_kwargs[modality][subkey] = subvalue
                            used_keys.add(subkey)
        else:
            # kwargs is a flat dictionary
            for key in kwargs:
                if key not in used_keys:
                    output_kwargs["common_kwargs"][key] = kwargs[key]

        # all modality-specific kwargs are updated with common kwargs
        for modality in output_kwargs:
            output_kwargs[modality].update(output_kwargs["common_kwargs"])
        return output_kwargs

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        **kwargs,
    ):
        r"""
        Instantiate a processor associated with a pretrained model.

        <Tip>

        This class method is simply calling the feature extractor
        [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor
        [`~image_processing_utils.ImageProcessingMixin`] and the tokenizer
        [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the
        methods above for more information.

        </Tip>

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                This can be either:

                - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
                  huggingface.co.
                - a path to a *directory* containing a feature extractor file saved using the
                  [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`.
                - a path or url to a saved feature extractor JSON *file*, e.g.,
                  `./my_model_directory/preprocessor_config.json`.
            **kwargs
                Additional keyword arguments passed along to both
                [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and
                [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
        """
        kwargs["cache_dir"] = cache_dir
        kwargs["force_download"] = force_download
        kwargs["local_files_only"] = local_files_only
        kwargs["revision"] = revision

        use_auth_token = kwargs.pop("use_auth_token", None)
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
                FutureWarning,
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        if token is not None:
            kwargs["token"] = token

        args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
        processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs)

        return cls.from_args_and_dict(args, processor_dict, **kwargs)

    @classmethod
    def register_for_auto_class(cls, auto_class="AutoProcessor"):
        """
        Register this class with a given auto class. This should only be used for custom feature extractors as the ones
        in the library are already mapped with `AutoProcessor`.

        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`):
                The auto class to register this new feature extractor with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

    @classmethod
    def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        args = []
        for attribute_name in cls.attributes:
            class_name = getattr(cls, f"{attribute_name}_class")
            if isinstance(class_name, tuple):
                classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
                use_fast = kwargs.get("use_fast", True)
                if use_fast and classes[1] is not None:
                    attribute_class = classes[1]
                else:
                    attribute_class = classes[0]
            else:
                attribute_class = getattr(transformers_module, class_name)

            args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
        return args

    @property
    def model_input_names(self):
        first_attribute = getattr(self, self.attributes[0])
        return getattr(first_attribute, "model_input_names", None)

    @staticmethod
    def validate_init_kwargs(processor_config, valid_kwargs):
        kwargs_from_config = processor_config.keys()
        unused_kwargs = {}
        unused_keys = set(kwargs_from_config) - set(valid_kwargs)
        if unused_keys:
            unused_key_str = ", ".join(unused_keys)
            logger.warning(
                f"Some kwargs in processor config are unused and will not have any effect: {unused_key_str}. "
            )
            unused_kwargs = {k: processor_config[k] for k in unused_keys}
        return unused_kwargs

    def prepare_and_validate_optional_call_args(self, *args):
        """
        Matches optional positional arguments to their corresponding names in `optional_call_args`
        in the processor class in the order they are passed to the processor call.

        Note that this should only be used in the `__call__` method of the processors with special
        arguments. Special arguments are arguments that aren't `text`, `images`, `audio`, nor `videos`
        but also aren't passed to the tokenizer, image processor, etc. Examples of such processors are:
            - `CLIPSegProcessor`
            - `LayoutLMv2Processor`
            - `OwlViTProcessor`

        Also note that passing by position to the processor call is now deprecated and will be disallowed
        in future versions. We only have this for backward compatibility.

        Example:
            Suppose that the processor class has `optional_call_args = ["arg_name_1", "arg_name_2"]`.
            And we define the call method as:
            ```python
            def __call__(
                self,
                text: str,
                images: Optional[ImageInput] = None,
                *arg,
                audio=None,
                videos=None,
            )
            ```

            Then, if we call the processor as:
            ```python
            images = [...]
            processor("What is common in these images?", images, arg_value_1, arg_value_2)
            ```

            Then, this method will return:
            ```python
            {
                "arg_name_1": arg_value_1,
                "arg_name_2": arg_value_2,
            }
            ```
            which we could then pass as kwargs to `self._merge_kwargs`
        """
        if len(args):
            warnings.warn(
                "Passing positional arguments to the processor call is now deprecated and will be disallowed in v4.47. "
                "Please pass all arguments as keyword arguments."
            )
        if len(args) > len(self.optional_call_args):
            raise ValueError(
                f"Expected *at most* {len(self.optional_call_args)} optional positional arguments in processor call"
                f"which will be matched with {' '.join(self.optional_call_args)} in the order they are passed."
                f"However, got {len(args)} positional arguments instead."
                "Please pass all arguments as keyword arguments instead (e.g. `processor(arg_name_1=..., arg_name_2=...))`."
            )
        return {arg_name: arg_value for arg_value, arg_name in zip(args, self.optional_call_args)}

    def apply_chat_template(
        self,
        conversation: Union[List[Dict[str, str]]],
        chat_template: Optional[str] = None,
        tokenize: bool = False,
        **kwargs,
    ) -> str:
        """
        Similar to the `apply_chat_template` method on tokenizers, this method applies a Jinja template to input
        conversations to turn them into a single tokenizable string.

        Args:
            conversation (`List[Dict, str, str]`):
                The conversation to format.
            chat_template (`Optional[str]`, *optional*):
                The Jinja template to use for formatting the conversation. If not provided, the tokenizer's
                chat template is used.
            tokenize (`bool`, *optional*, defaults to `False`):
                Whether to tokenize the output or not.
            **kwargs:
                Additional keyword arguments
        """

        if chat_template is None:
            if self.chat_template is not None:
                chat_template = self.chat_template
            else:
                raise ValueError(
                    "No chat template is set for this processor. Please either set the `chat_template` attribute, "
                    "or provide a chat template as an argument. See "
                    "https://huggingface.co/docs/transformers/main/en/chat_templating for more information."
                )
        return self.tokenizer.apply_chat_template(
            conversation, chat_template=chat_template, tokenize=tokenize, **kwargs
        )


def _validate_images_text_input_order(images, text):
    """
    For backward compatibility: reverse the order of `images` and `text` inputs if they are swapped.
    This method should only be called for processors where `images` and `text` have been swapped for uniformization purposes.
    Note that this method assumes that two `None` inputs are valid inputs. If this is not the case, it should be handled
    in the processor's `__call__` method before calling this method.
    """

    def is_url(val) -> bool:
        return isinstance(val, str) and val.startswith("http")

    def _is_valid_images_input_for_processor(imgs):
        # If we have an list of images, make sure every image is valid
        if isinstance(imgs, (list, tuple)):
            for img in imgs:
                if not _is_valid_images_input_for_processor(img):
                    return False
        # If not a list or tuple, we have been given a single image or batched tensor of images
        elif not (is_valid_image(imgs) or is_url(imgs)):
            return False
        return True

    def _is_valid_text_input_for_processor(t):
        if isinstance(t, str):
            # Strings are fine
            return True
        elif isinstance(t, (list, tuple)):
            # List are fine as long as they are...
            if len(t) == 0:
                # ... not empty
                return False
            for t_s in t:
                return _is_valid_text_input_for_processor(t_s)
        return False

    def _is_valid(input, validator):
        return validator(input) or input is None

    images_is_valid = _is_valid(images, _is_valid_images_input_for_processor)
    images_is_text = _is_valid_text_input_for_processor(images)

    text_is_valid = _is_valid(text, _is_valid_text_input_for_processor)
    text_is_images = _is_valid_images_input_for_processor(text)
    # Handle cases where both inputs are valid
    if images_is_valid and text_is_valid:
        return images, text

    # Handle cases where inputs need to and can be swapped
    if (images is None and text_is_images) or (text is None and images_is_text) or (images_is_text and text_is_images):
        logger.warning_once(
            "You may have used the wrong order for inputs. `images` should be passed before `text`. "
            "The `images` and `text` inputs will be swapped. This behavior will be deprecated in transformers v4.47."
        )
        return text, images

    raise ValueError("Invalid input type. Check that `images` and/or `text` are valid inputs.")


ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub)
if ProcessorMixin.push_to_hub.__doc__ is not None:
    ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format(
        object="processor", object_class="AutoProcessor", object_files="processor files"
    )