File size: 5,088 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"HQQ (Half-Quadratic Quantization) integration file"

from ..utils import is_hqq_available, is_torch_available, logging


if is_torch_available():
    import torch

logger = logging.get_logger(__name__)


# Name all modules inside the model
def autoname_modules(model):
    for name, module in model.named_modules():
        module.name = name


# Get the linear_tag from a modul name. For example: model.layers.31.self_attn.k_proj -> self_attn.k_proj
def name_to_linear_tag(name):
    return ".".join([n for n in name.split(".") if ((n not in ["model", "layers"]) and (not n.isnumeric()))])


# Get all linear tags available
def get_linear_tags(model):
    if is_hqq_available():
        from hqq.core.quantize import HQQLinear

    linear_tags = set()
    for name, module in model.named_modules():
        if isinstance(module, (torch.nn.Linear, HQQLinear)):
            linear_tags.add(name_to_linear_tag(name))
    return list(linear_tags)


def _prepare_for_hqq_linear(model, patch_params, has_been_replaced, current_key_name=None):
    for name, module in model.named_children():
        if current_key_name is None:
            current_key_name = []
        current_key_name.append(name)

        if isinstance(module, torch.nn.Linear):
            # Get linear tag
            linear_tag = name_to_linear_tag(module.name)

            # We put the module quant_config into the nn.Linear layer so we can access it later in quantizer_hqq.create_quantized_param()
            if linear_tag in patch_params:
                if patch_params[linear_tag] is not None:
                    model._modules[name].quant_config = patch_params[linear_tag]
                    # Store the module class in case we need to transpose the weight later
                    model._modules[name].source_cls = type(module)
                    # Force requires grad to False to avoid unexpected errors
                    model._modules[name].requires_grad_(False)

            has_been_replaced = True

            # Add these fake parameters to avoid loading fail
            for att in ["W_q", "meta"]:
                setattr(module, att, None)

        if len(list(module.children())) > 0:
            _, has_been_replaced = _prepare_for_hqq_linear(
                module,
                patch_params=patch_params,
                has_been_replaced=has_been_replaced,
            )
        # Remove the last key for recursion
        current_key_name.pop(-1)

    return model, has_been_replaced


def prepare_for_hqq_linear(model, quantization_config=None, modules_to_not_convert=None, has_been_replaced=False):
    """
    Prepares nn.Linear layers for HQQ quantization.
    Since each layer type can have separate quantization parameters, we need to do the following:
    1- tag each module with its neme via autoname_modules()
    2- Extract linear_tags (e.g. ['self_attn.q_proj', ...])
    3- Map quantization parameters as a dictionary linear_tag -> quant_params as HQQLinear exepects it, this is referred to as patch_params
    """

    modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert

    # Add name to module
    autoname_modules(model)

    # Get linear tags. This allows us to use different quant params to different layer types
    linear_tags = get_linear_tags(model)

    # Convert quantization_config to layer-wise config
    skip_modules = quantization_config.skip_modules
    quant_config = quantization_config.quant_config
    linear_tags = list(set(linear_tags) - set(skip_modules) - set(modules_to_not_convert))

    if any(key in linear_tags for key in quant_config.keys()):
        # If the user doesn't specify a key from get_linear_tags, the layer is not quantized via (key, None)
        patch_params = {key: None for key in linear_tags}
        patch_params.update(quant_config)
    else:
        # Same quant_config for all layers
        patch_params = {k: quant_config for k in linear_tags}

    model, has_been_replaced = _prepare_for_hqq_linear(
        model, patch_params=patch_params, has_been_replaced=has_been_replaced
    )

    # We store quantization config as linear_tag -> hqq quant config
    model.config.quantization_config = {
        "quant_config": quant_config,
        "quant_method": quantization_config.quant_method,
        "skip_modules": skip_modules,
    }

    if not has_been_replaced:
        logger.warning("No linear modules were found in your model for quantization.")

    return model