File size: 7,815 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from functools import partial
from typing import Any, Callable, Optional
import torch
from torch import nn
from torchvision.ops.misc import Conv3dNormActivation
from ...transforms._presets import VideoClassification
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _KINETICS400_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
__all__ = [
"S3D",
"S3D_Weights",
"s3d",
]
class TemporalSeparableConv(nn.Sequential):
def __init__(
self,
in_planes: int,
out_planes: int,
kernel_size: int,
stride: int,
padding: int,
norm_layer: Callable[..., nn.Module],
):
super().__init__(
Conv3dNormActivation(
in_planes,
out_planes,
kernel_size=(1, kernel_size, kernel_size),
stride=(1, stride, stride),
padding=(0, padding, padding),
bias=False,
norm_layer=norm_layer,
),
Conv3dNormActivation(
out_planes,
out_planes,
kernel_size=(kernel_size, 1, 1),
stride=(stride, 1, 1),
padding=(padding, 0, 0),
bias=False,
norm_layer=norm_layer,
),
)
class SepInceptionBlock3D(nn.Module):
def __init__(
self,
in_planes: int,
b0_out: int,
b1_mid: int,
b1_out: int,
b2_mid: int,
b2_out: int,
b3_out: int,
norm_layer: Callable[..., nn.Module],
):
super().__init__()
self.branch0 = Conv3dNormActivation(in_planes, b0_out, kernel_size=1, stride=1, norm_layer=norm_layer)
self.branch1 = nn.Sequential(
Conv3dNormActivation(in_planes, b1_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
TemporalSeparableConv(b1_mid, b1_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
)
self.branch2 = nn.Sequential(
Conv3dNormActivation(in_planes, b2_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
TemporalSeparableConv(b2_mid, b2_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
)
self.branch3 = nn.Sequential(
nn.MaxPool3d(kernel_size=(3, 3, 3), stride=1, padding=1),
Conv3dNormActivation(in_planes, b3_out, kernel_size=1, stride=1, norm_layer=norm_layer),
)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
out = torch.cat((x0, x1, x2, x3), 1)
return out
class S3D(nn.Module):
"""S3D main class.
Args:
num_class (int): number of classes for the classification task.
dropout (float): dropout probability.
norm_layer (Optional[Callable]): Module specifying the normalization layer to use.
Inputs:
x (Tensor): batch of videos with dimensions (batch, channel, time, height, width)
"""
def __init__(
self,
num_classes: int = 400,
dropout: float = 0.2,
norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
) -> None:
super().__init__()
_log_api_usage_once(self)
if norm_layer is None:
norm_layer = partial(nn.BatchNorm3d, eps=0.001, momentum=0.001)
self.features = nn.Sequential(
TemporalSeparableConv(3, 64, 7, 2, 3, norm_layer),
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
Conv3dNormActivation(
64,
64,
kernel_size=1,
stride=1,
norm_layer=norm_layer,
),
TemporalSeparableConv(64, 192, 3, 1, 1, norm_layer),
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
SepInceptionBlock3D(192, 64, 96, 128, 16, 32, 32, norm_layer),
SepInceptionBlock3D(256, 128, 128, 192, 32, 96, 64, norm_layer),
nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)),
SepInceptionBlock3D(480, 192, 96, 208, 16, 48, 64, norm_layer),
SepInceptionBlock3D(512, 160, 112, 224, 24, 64, 64, norm_layer),
SepInceptionBlock3D(512, 128, 128, 256, 24, 64, 64, norm_layer),
SepInceptionBlock3D(512, 112, 144, 288, 32, 64, 64, norm_layer),
SepInceptionBlock3D(528, 256, 160, 320, 32, 128, 128, norm_layer),
nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0)),
SepInceptionBlock3D(832, 256, 160, 320, 32, 128, 128, norm_layer),
SepInceptionBlock3D(832, 384, 192, 384, 48, 128, 128, norm_layer),
)
self.avgpool = nn.AvgPool3d(kernel_size=(2, 7, 7), stride=1)
self.classifier = nn.Sequential(
nn.Dropout(p=dropout),
nn.Conv3d(1024, num_classes, kernel_size=1, stride=1, bias=True),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = self.classifier(x)
x = torch.mean(x, dim=(2, 3, 4))
return x
class S3D_Weights(WeightsEnum):
KINETICS400_V1 = Weights(
url="https://download.pytorch.org/models/s3d-d76dad2f.pth",
transforms=partial(
VideoClassification,
crop_size=(224, 224),
resize_size=(256, 256),
),
meta={
"min_size": (224, 224),
"min_temporal_size": 14,
"categories": _KINETICS400_CATEGORIES,
"recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification#s3d",
"_docs": (
"The weights aim to approximate the accuracy of the paper. The accuracies are estimated on clip-level "
"with parameters `frame_rate=15`, `clips_per_video=1`, and `clip_len=128`."
),
"num_params": 8320048,
"_metrics": {
"Kinetics-400": {
"acc@1": 68.368,
"acc@5": 88.050,
}
},
"_ops": 17.979,
"_file_size": 31.972,
},
)
DEFAULT = KINETICS400_V1
@register_model()
@handle_legacy_interface(weights=("pretrained", S3D_Weights.KINETICS400_V1))
def s3d(*, weights: Optional[S3D_Weights] = None, progress: bool = True, **kwargs: Any) -> S3D:
"""Construct Separable 3D CNN model.
Reference: `Rethinking Spatiotemporal Feature Learning <https://arxiv.org/abs/1712.04851>`__.
.. betastatus:: video module
Args:
weights (:class:`~torchvision.models.video.S3D_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.video.S3D_Weights`
below for more details, and possible values. By default, no
pre-trained weights are used.
progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.video.S3D`` base class.
Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/s3d.py>`_
for more details about this class.
.. autoclass:: torchvision.models.video.S3D_Weights
:members:
"""
weights = S3D_Weights.verify(weights)
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
model = S3D(**kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
|