File size: 8,763 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from functools import partial
from typing import Any, Optional
import torch
import torch.nn as nn
import torch.nn.init as init
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface
__all__ = ["SqueezeNet", "SqueezeNet1_0_Weights", "SqueezeNet1_1_Weights", "squeezenet1_0", "squeezenet1_1"]
class Fire(nn.Module):
def __init__(self, inplanes: int, squeeze_planes: int, expand1x1_planes: int, expand3x3_planes: int) -> None:
super().__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1)
self.expand1x1_activation = nn.ReLU(inplace=True)
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1)
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.squeeze_activation(self.squeeze(x))
return torch.cat(
[self.expand1x1_activation(self.expand1x1(x)), self.expand3x3_activation(self.expand3x3(x))], 1
)
class SqueezeNet(nn.Module):
def __init__(self, version: str = "1_0", num_classes: int = 1000, dropout: float = 0.5) -> None:
super().__init__()
_log_api_usage_once(self)
self.num_classes = num_classes
if version == "1_0":
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
elif version == "1_1":
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
else:
# FIXME: Is this needed? SqueezeNet should only be called from the
# FIXME: squeezenet1_x() functions
# FIXME: This checking is not done for the other models
raise ValueError(f"Unsupported SqueezeNet version {version}: 1_0 or 1_1 expected")
# Final convolution is initialized differently from the rest
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
nn.Dropout(p=dropout), final_conv, nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d((1, 1))
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m is final_conv:
init.normal_(m.weight, mean=0.0, std=0.01)
else:
init.kaiming_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.classifier(x)
return torch.flatten(x, 1)
def _squeezenet(
version: str,
weights: Optional[WeightsEnum],
progress: bool,
**kwargs: Any,
) -> SqueezeNet:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
model = SqueezeNet(version, **kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
_COMMON_META = {
"categories": _IMAGENET_CATEGORIES,
"recipe": "https://github.com/pytorch/vision/pull/49#issuecomment-277560717",
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
}
class SqueezeNet1_0_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/squeezenet1_0-b66bff10.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"min_size": (21, 21),
"num_params": 1248424,
"_metrics": {
"ImageNet-1K": {
"acc@1": 58.092,
"acc@5": 80.420,
}
},
"_ops": 0.819,
"_file_size": 4.778,
},
)
DEFAULT = IMAGENET1K_V1
class SqueezeNet1_1_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/squeezenet1_1-b8a52dc0.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"min_size": (17, 17),
"num_params": 1235496,
"_metrics": {
"ImageNet-1K": {
"acc@1": 58.178,
"acc@5": 80.624,
}
},
"_ops": 0.349,
"_file_size": 4.729,
},
)
DEFAULT = IMAGENET1K_V1
@register_model()
@handle_legacy_interface(weights=("pretrained", SqueezeNet1_0_Weights.IMAGENET1K_V1))
def squeezenet1_0(
*, weights: Optional[SqueezeNet1_0_Weights] = None, progress: bool = True, **kwargs: Any
) -> SqueezeNet:
"""SqueezeNet model architecture from the `SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5MB model size
<https://arxiv.org/abs/1602.07360>`_ paper.
Args:
weights (:class:`~torchvision.models.SqueezeNet1_0_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.SqueezeNet1_0_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.SqueezeNet1_0_Weights
:members:
"""
weights = SqueezeNet1_0_Weights.verify(weights)
return _squeezenet("1_0", weights, progress, **kwargs)
@register_model()
@handle_legacy_interface(weights=("pretrained", SqueezeNet1_1_Weights.IMAGENET1K_V1))
def squeezenet1_1(
*, weights: Optional[SqueezeNet1_1_Weights] = None, progress: bool = True, **kwargs: Any
) -> SqueezeNet:
"""SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Args:
weights (:class:`~torchvision.models.SqueezeNet1_1_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.SqueezeNet1_1_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
for more details about this class.
.. autoclass:: torchvision.models.SqueezeNet1_1_Weights
:members:
"""
weights = SqueezeNet1_1_Weights.verify(weights)
return _squeezenet("1_1", weights, progress, **kwargs)
|