File size: 13,219 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import warnings
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from torch import nn, Tensor
from ...ops.misc import Conv2dNormActivation
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .. import mobilenet
from .._api import register_model, Weights, WeightsEnum
from .._meta import _COCO_CATEGORIES
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .ssd import SSD, SSDScoringHead
__all__ = [
"SSDLite320_MobileNet_V3_Large_Weights",
"ssdlite320_mobilenet_v3_large",
]
# Building blocks of SSDlite as described in section 6.2 of MobileNetV2 paper
def _prediction_block(
in_channels: int, out_channels: int, kernel_size: int, norm_layer: Callable[..., nn.Module]
) -> nn.Sequential:
return nn.Sequential(
# 3x3 depthwise with stride 1 and padding 1
Conv2dNormActivation(
in_channels,
in_channels,
kernel_size=kernel_size,
groups=in_channels,
norm_layer=norm_layer,
activation_layer=nn.ReLU6,
),
# 1x1 projetion to output channels
nn.Conv2d(in_channels, out_channels, 1),
)
def _extra_block(in_channels: int, out_channels: int, norm_layer: Callable[..., nn.Module]) -> nn.Sequential:
activation = nn.ReLU6
intermediate_channels = out_channels // 2
return nn.Sequential(
# 1x1 projection to half output channels
Conv2dNormActivation(
in_channels, intermediate_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=activation
),
# 3x3 depthwise with stride 2 and padding 1
Conv2dNormActivation(
intermediate_channels,
intermediate_channels,
kernel_size=3,
stride=2,
groups=intermediate_channels,
norm_layer=norm_layer,
activation_layer=activation,
),
# 1x1 projetion to output channels
Conv2dNormActivation(
intermediate_channels, out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=activation
),
)
def _normal_init(conv: nn.Module):
for layer in conv.modules():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, mean=0.0, std=0.03)
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, 0.0)
class SSDLiteHead(nn.Module):
def __init__(
self, in_channels: List[int], num_anchors: List[int], num_classes: int, norm_layer: Callable[..., nn.Module]
):
super().__init__()
self.classification_head = SSDLiteClassificationHead(in_channels, num_anchors, num_classes, norm_layer)
self.regression_head = SSDLiteRegressionHead(in_channels, num_anchors, norm_layer)
def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
return {
"bbox_regression": self.regression_head(x),
"cls_logits": self.classification_head(x),
}
class SSDLiteClassificationHead(SSDScoringHead):
def __init__(
self, in_channels: List[int], num_anchors: List[int], num_classes: int, norm_layer: Callable[..., nn.Module]
):
cls_logits = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
cls_logits.append(_prediction_block(channels, num_classes * anchors, 3, norm_layer))
_normal_init(cls_logits)
super().__init__(cls_logits, num_classes)
class SSDLiteRegressionHead(SSDScoringHead):
def __init__(self, in_channels: List[int], num_anchors: List[int], norm_layer: Callable[..., nn.Module]):
bbox_reg = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
bbox_reg.append(_prediction_block(channels, 4 * anchors, 3, norm_layer))
_normal_init(bbox_reg)
super().__init__(bbox_reg, 4)
class SSDLiteFeatureExtractorMobileNet(nn.Module):
def __init__(
self,
backbone: nn.Module,
c4_pos: int,
norm_layer: Callable[..., nn.Module],
width_mult: float = 1.0,
min_depth: int = 16,
):
super().__init__()
_log_api_usage_once(self)
if backbone[c4_pos].use_res_connect:
raise ValueError("backbone[c4_pos].use_res_connect should be False")
self.features = nn.Sequential(
# As described in section 6.3 of MobileNetV3 paper
nn.Sequential(*backbone[:c4_pos], backbone[c4_pos].block[0]), # from start until C4 expansion layer
nn.Sequential(backbone[c4_pos].block[1:], *backbone[c4_pos + 1 :]), # from C4 depthwise until end
)
get_depth = lambda d: max(min_depth, int(d * width_mult)) # noqa: E731
extra = nn.ModuleList(
[
_extra_block(backbone[-1].out_channels, get_depth(512), norm_layer),
_extra_block(get_depth(512), get_depth(256), norm_layer),
_extra_block(get_depth(256), get_depth(256), norm_layer),
_extra_block(get_depth(256), get_depth(128), norm_layer),
]
)
_normal_init(extra)
self.extra = extra
def forward(self, x: Tensor) -> Dict[str, Tensor]:
# Get feature maps from backbone and extra. Can't be refactored due to JIT limitations.
output = []
for block in self.features:
x = block(x)
output.append(x)
for block in self.extra:
x = block(x)
output.append(x)
return OrderedDict([(str(i), v) for i, v in enumerate(output)])
def _mobilenet_extractor(
backbone: Union[mobilenet.MobileNetV2, mobilenet.MobileNetV3],
trainable_layers: int,
norm_layer: Callable[..., nn.Module],
):
backbone = backbone.features
# Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
# The first and last blocks are always included because they are the C0 (conv1) and Cn.
stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
num_stages = len(stage_indices)
# find the index of the layer from which we won't freeze
if not 0 <= trainable_layers <= num_stages:
raise ValueError("trainable_layers should be in the range [0, {num_stages}], instead got {trainable_layers}")
freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
for b in backbone[:freeze_before]:
for parameter in b.parameters():
parameter.requires_grad_(False)
return SSDLiteFeatureExtractorMobileNet(backbone, stage_indices[-2], norm_layer)
class SSDLite320_MobileNet_V3_Large_Weights(WeightsEnum):
COCO_V1 = Weights(
url="https://download.pytorch.org/models/ssdlite320_mobilenet_v3_large_coco-a79551df.pth",
transforms=ObjectDetection,
meta={
"num_params": 3440060,
"categories": _COCO_CATEGORIES,
"min_size": (1, 1),
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssdlite320-mobilenetv3-large",
"_metrics": {
"COCO-val2017": {
"box_map": 21.3,
}
},
"_ops": 0.583,
"_file_size": 13.418,
"_docs": """These weights were produced by following a similar training recipe as on the paper.""",
},
)
DEFAULT = COCO_V1
@register_model()
@handle_legacy_interface(
weights=("pretrained", SSDLite320_MobileNet_V3_Large_Weights.COCO_V1),
weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
def ssdlite320_mobilenet_v3_large(
*,
weights: Optional[SSDLite320_MobileNet_V3_Large_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
**kwargs: Any,
) -> SSD:
"""SSDlite model architecture with input size 320x320 and a MobileNetV3 Large backbone, as
described at `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__ and
`MobileNetV2: Inverted Residuals and Linear Bottlenecks <https://arxiv.org/abs/1801.04381>`__.
.. betastatus:: detection module
See :func:`~torchvision.models.detection.ssd300_vgg16` for more details.
Example:
>>> model = torchvision.models.detection.ssdlite320_mobilenet_v3_large(weights=SSDLite320_MobileNet_V3_Large_Weights.DEFAULT)
>>> model.eval()
>>> x = [torch.rand(3, 320, 320), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Args:
weights (:class:`~torchvision.models.detection.SSDLite320_MobileNet_V3_Large_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.detection.SSDLite320_MobileNet_V3_Large_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
num_classes (int, optional): number of output classes of the model
(including the background).
weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
weights for the backbone.
trainable_backbone_layers (int, optional): number of trainable (not frozen) layers
starting from final block. Valid values are between 0 and 6, with 6 meaning all
backbone layers are trainable. If ``None`` is passed (the default) this value is
set to 6.
norm_layer (callable, optional): Module specifying the normalization layer to use.
**kwargs: parameters passed to the ``torchvision.models.detection.ssd.SSD``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssdlite.py>`_
for more details about this class.
.. autoclass:: torchvision.models.detection.SSDLite320_MobileNet_V3_Large_Weights
:members:
"""
weights = SSDLite320_MobileNet_V3_Large_Weights.verify(weights)
weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)
if "size" in kwargs:
warnings.warn("The size of the model is already fixed; ignoring the parameter.")
if weights is not None:
weights_backbone = None
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
elif num_classes is None:
num_classes = 91
trainable_backbone_layers = _validate_trainable_layers(
weights is not None or weights_backbone is not None, trainable_backbone_layers, 6, 6
)
# Enable reduced tail if no pretrained backbone is selected. See Table 6 of MobileNetV3 paper.
reduce_tail = weights_backbone is None
if norm_layer is None:
norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.03)
backbone = mobilenet_v3_large(
weights=weights_backbone, progress=progress, norm_layer=norm_layer, reduced_tail=reduce_tail, **kwargs
)
if weights_backbone is None:
# Change the default initialization scheme if not pretrained
_normal_init(backbone)
backbone = _mobilenet_extractor(
backbone,
trainable_backbone_layers,
norm_layer,
)
size = (320, 320)
anchor_generator = DefaultBoxGenerator([[2, 3] for _ in range(6)], min_ratio=0.2, max_ratio=0.95)
out_channels = det_utils.retrieve_out_channels(backbone, size)
num_anchors = anchor_generator.num_anchors_per_location()
if len(out_channels) != len(anchor_generator.aspect_ratios):
raise ValueError(
f"The length of the output channels from the backbone {len(out_channels)} do not match the length of the anchor generator aspect ratios {len(anchor_generator.aspect_ratios)}"
)
defaults = {
"score_thresh": 0.001,
"nms_thresh": 0.55,
"detections_per_img": 300,
"topk_candidates": 300,
# Rescale the input in a way compatible to the backbone:
# The following mean/std rescale the data from [0, 1] to [-1, 1]
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
kwargs: Any = {**defaults, **kwargs}
model = SSD(
backbone,
anchor_generator,
size,
num_classes,
head=SSDLiteHead(out_channels, num_anchors, num_classes, norm_layer),
**kwargs,
)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
|