File size: 28,979 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from ...ops import boxes as box_ops
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _COCO_CATEGORIES
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..vgg import VGG, vgg16, VGG16_Weights
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform
__all__ = [
"SSD300_VGG16_Weights",
"ssd300_vgg16",
]
class SSD300_VGG16_Weights(WeightsEnum):
COCO_V1 = Weights(
url="https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
transforms=ObjectDetection,
meta={
"num_params": 35641826,
"categories": _COCO_CATEGORIES,
"min_size": (1, 1),
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16",
"_metrics": {
"COCO-val2017": {
"box_map": 25.1,
}
},
"_ops": 34.858,
"_file_size": 135.988,
"_docs": """These weights were produced by following a similar training recipe as on the paper.""",
},
)
DEFAULT = COCO_V1
def _xavier_init(conv: nn.Module):
for layer in conv.modules():
if isinstance(layer, nn.Conv2d):
torch.nn.init.xavier_uniform_(layer.weight)
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, 0.0)
class SSDHead(nn.Module):
def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
super().__init__()
self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
self.regression_head = SSDRegressionHead(in_channels, num_anchors)
def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
return {
"bbox_regression": self.regression_head(x),
"cls_logits": self.classification_head(x),
}
class SSDScoringHead(nn.Module):
def __init__(self, module_list: nn.ModuleList, num_columns: int):
super().__init__()
self.module_list = module_list
self.num_columns = num_columns
def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
"""
This is equivalent to self.module_list[idx](x),
but torchscript doesn't support this yet
"""
num_blocks = len(self.module_list)
if idx < 0:
idx += num_blocks
out = x
for i, module in enumerate(self.module_list):
if i == idx:
out = module(x)
return out
def forward(self, x: List[Tensor]) -> Tensor:
all_results = []
for i, features in enumerate(x):
results = self._get_result_from_module_list(features, i)
# Permute output from (N, A * K, H, W) to (N, HWA, K).
N, _, H, W = results.shape
results = results.view(N, -1, self.num_columns, H, W)
results = results.permute(0, 3, 4, 1, 2)
results = results.reshape(N, -1, self.num_columns) # Size=(N, HWA, K)
all_results.append(results)
return torch.cat(all_results, dim=1)
class SSDClassificationHead(SSDScoringHead):
def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
cls_logits = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
_xavier_init(cls_logits)
super().__init__(cls_logits, num_classes)
class SSDRegressionHead(SSDScoringHead):
def __init__(self, in_channels: List[int], num_anchors: List[int]):
bbox_reg = nn.ModuleList()
for channels, anchors in zip(in_channels, num_anchors):
bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
_xavier_init(bbox_reg)
super().__init__(bbox_reg, 4)
class SSD(nn.Module):
"""
Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes, but they will be resized
to a fixed size before passing it to the backbone.
The behavior of the model changes depending on if it is in training or evaluation mode.
During training, the model expects both the input tensors and targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each detection
- scores (Tensor[N]): the scores for each detection
Args:
backbone (nn.Module): the network used to compute the features for the model.
It should contain an out_channels attribute with the list of the output channels of
each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
set of feature maps.
size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
to the backbone.
num_classes (int): number of output classes of the model (including the background).
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
image_std (Tuple[float, float, float]): std values used for input normalization.
They are generally the std values of the dataset on which the backbone has been trained on
head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
a classification and regression module.
score_thresh (float): Score threshold used for postprocessing the detections.
nms_thresh (float): NMS threshold used for postprocessing the detections.
detections_per_img (int): Number of best detections to keep after NMS.
iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
considered as positive during training.
topk_candidates (int): Number of best detections to keep before NMS.
positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
proposals used during the training of the classification head. It is used to estimate the negative to
positive ratio.
"""
__annotations__ = {
"box_coder": det_utils.BoxCoder,
"proposal_matcher": det_utils.Matcher,
}
def __init__(
self,
backbone: nn.Module,
anchor_generator: DefaultBoxGenerator,
size: Tuple[int, int],
num_classes: int,
image_mean: Optional[List[float]] = None,
image_std: Optional[List[float]] = None,
head: Optional[nn.Module] = None,
score_thresh: float = 0.01,
nms_thresh: float = 0.45,
detections_per_img: int = 200,
iou_thresh: float = 0.5,
topk_candidates: int = 400,
positive_fraction: float = 0.25,
**kwargs: Any,
):
super().__init__()
_log_api_usage_once(self)
self.backbone = backbone
self.anchor_generator = anchor_generator
self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
if head is None:
if hasattr(backbone, "out_channels"):
out_channels = backbone.out_channels
else:
out_channels = det_utils.retrieve_out_channels(backbone, size)
if len(out_channels) != len(anchor_generator.aspect_ratios):
raise ValueError(
f"The length of the output channels from the backbone ({len(out_channels)}) do not match the length of the anchor generator aspect ratios ({len(anchor_generator.aspect_ratios)})"
)
num_anchors = self.anchor_generator.num_anchors_per_location()
head = SSDHead(out_channels, num_anchors, num_classes)
self.head = head
self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)
if image_mean is None:
image_mean = [0.485, 0.456, 0.406]
if image_std is None:
image_std = [0.229, 0.224, 0.225]
self.transform = GeneralizedRCNNTransform(
min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size, **kwargs
)
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.topk_candidates = topk_candidates
self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction
# used only on torchscript mode
self._has_warned = False
@torch.jit.unused
def eager_outputs(
self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training:
return losses
return detections
def compute_loss(
self,
targets: List[Dict[str, Tensor]],
head_outputs: Dict[str, Tensor],
anchors: List[Tensor],
matched_idxs: List[Tensor],
) -> Dict[str, Tensor]:
bbox_regression = head_outputs["bbox_regression"]
cls_logits = head_outputs["cls_logits"]
# Match original targets with default boxes
num_foreground = 0
bbox_loss = []
cls_targets = []
for (
targets_per_image,
bbox_regression_per_image,
cls_logits_per_image,
anchors_per_image,
matched_idxs_per_image,
) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
# produce the matching between boxes and targets
foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
num_foreground += foreground_matched_idxs_per_image.numel()
# Calculate regression loss
matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
bbox_loss.append(
torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
)
# Estimate ground truth for class targets
gt_classes_target = torch.zeros(
(cls_logits_per_image.size(0),),
dtype=targets_per_image["labels"].dtype,
device=targets_per_image["labels"].device,
)
gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
foreground_matched_idxs_per_image
]
cls_targets.append(gt_classes_target)
bbox_loss = torch.stack(bbox_loss)
cls_targets = torch.stack(cls_targets)
# Calculate classification loss
num_classes = cls_logits.size(-1)
cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
cls_targets.size()
)
# Hard Negative Sampling
foreground_idxs = cls_targets > 0
num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
# num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
negative_loss = cls_loss.clone()
negative_loss[foreground_idxs] = -float("inf") # use -inf to detect positive values that creeped in the sample
values, idx = negative_loss.sort(1, descending=True)
# background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
background_idxs = idx.sort(1)[1] < num_negative
N = max(1, num_foreground)
return {
"bbox_regression": bbox_loss.sum() / N,
"classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
}
def forward(
self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training:
if targets is None:
torch._assert(False, "targets should not be none when in training mode")
else:
for target in targets:
boxes = target["boxes"]
if isinstance(boxes, torch.Tensor):
torch._assert(
len(boxes.shape) == 2 and boxes.shape[-1] == 4,
f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
)
else:
torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.")
# get the original image sizes
original_image_sizes: List[Tuple[int, int]] = []
for img in images:
val = img.shape[-2:]
torch._assert(
len(val) == 2,
f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
)
original_image_sizes.append((val[0], val[1]))
# transform the input
images, targets = self.transform(images, targets)
# Check for degenerate boxes
if targets is not None:
for target_idx, target in enumerate(targets):
boxes = target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
degen_bb: List[float] = boxes[bb_idx].tolist()
torch._assert(
False,
"All bounding boxes should have positive height and width."
f" Found invalid box {degen_bb} for target at index {target_idx}.",
)
# get the features from the backbone
features = self.backbone(images.tensors)
if isinstance(features, torch.Tensor):
features = OrderedDict([("0", features)])
features = list(features.values())
# compute the ssd heads outputs using the features
head_outputs = self.head(features)
# create the set of anchors
anchors = self.anchor_generator(images, features)
losses = {}
detections: List[Dict[str, Tensor]] = []
if self.training:
matched_idxs = []
if targets is None:
torch._assert(False, "targets should not be none when in training mode")
else:
for anchors_per_image, targets_per_image in zip(anchors, targets):
if targets_per_image["boxes"].numel() == 0:
matched_idxs.append(
torch.full(
(anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device
)
)
continue
match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
matched_idxs.append(self.proposal_matcher(match_quality_matrix))
losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
else:
detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)
if torch.jit.is_scripting():
if not self._has_warned:
warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
self._has_warned = True
return losses, detections
return self.eager_outputs(losses, detections)
def postprocess_detections(
self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
) -> List[Dict[str, Tensor]]:
bbox_regression = head_outputs["bbox_regression"]
pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
num_classes = pred_scores.size(-1)
device = pred_scores.device
detections: List[Dict[str, Tensor]] = []
for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
boxes = self.box_coder.decode_single(boxes, anchors)
boxes = box_ops.clip_boxes_to_image(boxes, image_shape)
image_boxes = []
image_scores = []
image_labels = []
for label in range(1, num_classes):
score = scores[:, label]
keep_idxs = score > self.score_thresh
score = score[keep_idxs]
box = boxes[keep_idxs]
# keep only topk scoring predictions
num_topk = det_utils._topk_min(score, self.topk_candidates, 0)
score, idxs = score.topk(num_topk)
box = box[idxs]
image_boxes.append(box)
image_scores.append(score)
image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))
image_boxes = torch.cat(image_boxes, dim=0)
image_scores = torch.cat(image_scores, dim=0)
image_labels = torch.cat(image_labels, dim=0)
# non-maximum suppression
keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
keep = keep[: self.detections_per_img]
detections.append(
{
"boxes": image_boxes[keep],
"scores": image_scores[keep],
"labels": image_labels[keep],
}
)
return detections
class SSDFeatureExtractorVGG(nn.Module):
def __init__(self, backbone: nn.Module, highres: bool):
super().__init__()
_, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))
# Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
backbone[maxpool3_pos].ceil_mode = True
# parameters used for L2 regularization + rescaling
self.scale_weight = nn.Parameter(torch.ones(512) * 20)
# Multiple Feature maps - page 4, Fig 2 of SSD paper
self.features = nn.Sequential(*backbone[:maxpool4_pos]) # until conv4_3
# SSD300 case - page 4, Fig 2 of SSD paper
extra = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(1024, 256, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2), # conv8_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(512, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), # conv9_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3), # conv10_2
nn.ReLU(inplace=True),
),
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3), # conv11_2
nn.ReLU(inplace=True),
),
]
)
if highres:
# Additional layers for the SSD512 case. See page 11, footernote 5.
extra.append(
nn.Sequential(
nn.Conv2d(256, 128, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=4), # conv12_2
nn.ReLU(inplace=True),
)
)
_xavier_init(extra)
fc = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False), # add modified maxpool5
nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6), # FC6 with atrous
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1), # FC7
nn.ReLU(inplace=True),
)
_xavier_init(fc)
extra.insert(
0,
nn.Sequential(
*backbone[maxpool4_pos:-1], # until conv5_3, skip maxpool5
fc,
),
)
self.extra = extra
def forward(self, x: Tensor) -> Dict[str, Tensor]:
# L2 regularization + Rescaling of 1st block's feature map
x = self.features(x)
rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
output = [rescaled]
# Calculating Feature maps for the rest blocks
for block in self.extra:
x = block(x)
output.append(x)
return OrderedDict([(str(i), v) for i, v in enumerate(output)])
def _vgg_extractor(backbone: VGG, highres: bool, trainable_layers: int):
backbone = backbone.features
# Gather the indices of maxpools. These are the locations of output blocks.
stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1]
num_stages = len(stage_indices)
# find the index of the layer from which we won't freeze
torch._assert(
0 <= trainable_layers <= num_stages,
f"trainable_layers should be in the range [0, {num_stages}]. Instead got {trainable_layers}",
)
freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
for b in backbone[:freeze_before]:
for parameter in b.parameters():
parameter.requires_grad_(False)
return SSDFeatureExtractorVGG(backbone, highres)
@register_model()
@handle_legacy_interface(
weights=("pretrained", SSD300_VGG16_Weights.COCO_V1),
weights_backbone=("pretrained_backbone", VGG16_Weights.IMAGENET1K_FEATURES),
)
def ssd300_vgg16(
*,
weights: Optional[SSD300_VGG16_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[VGG16_Weights] = VGG16_Weights.IMAGENET1K_FEATURES,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> SSD:
"""The SSD300 model is based on the `SSD: Single Shot MultiBox Detector
<https://arxiv.org/abs/1512.02325>`_ paper.
.. betastatus:: detection module
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes, but they will be resized
to a fixed size before passing it to the backbone.
The behavior of the model changes depending on if it is in training or evaluation mode.
During training, the model expects both the input tensors and targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each detection
- scores (Tensor[N]): the scores for each detection
Example:
>>> model = torchvision.models.detection.ssd300_vgg16(weights=SSD300_VGG16_Weights.DEFAULT)
>>> model.eval()
>>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Args:
weights (:class:`~torchvision.models.detection.SSD300_VGG16_Weights`, optional): The pretrained
weights to use. See
:class:`~torchvision.models.detection.SSD300_VGG16_Weights`
below for more details, and possible values. By default, no
pre-trained weights are used.
progress (bool, optional): If True, displays a progress bar of the download to stderr
Default is True.
num_classes (int, optional): number of output classes of the model (including the background)
weights_backbone (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights for the
backbone
trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
passed (the default) this value is set to 4.
**kwargs: parameters passed to the ``torchvision.models.detection.SSD``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssd.py>`_
for more details about this class.
.. autoclass:: torchvision.models.detection.SSD300_VGG16_Weights
:members:
"""
weights = SSD300_VGG16_Weights.verify(weights)
weights_backbone = VGG16_Weights.verify(weights_backbone)
if "size" in kwargs:
warnings.warn("The size of the model is already fixed; ignoring the parameter.")
if weights is not None:
weights_backbone = None
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
elif num_classes is None:
num_classes = 91
trainable_backbone_layers = _validate_trainable_layers(
weights is not None or weights_backbone is not None, trainable_backbone_layers, 5, 4
)
# Use custom backbones more appropriate for SSD
backbone = vgg16(weights=weights_backbone, progress=progress)
backbone = _vgg_extractor(backbone, False, trainable_backbone_layers)
anchor_generator = DefaultBoxGenerator(
[[2], [2, 3], [2, 3], [2, 3], [2], [2]],
scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
steps=[8, 16, 32, 64, 100, 300],
)
defaults = {
# Rescale the input in a way compatible to the backbone
"image_mean": [0.48235, 0.45882, 0.40784],
"image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0], # undo the 0-1 scaling of toTensor
}
kwargs: Any = {**defaults, **kwargs}
model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
|