File size: 34,235 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
import math
import warnings
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
from torch import nn, Tensor
from ...ops import boxes as box_ops, generalized_box_iou_loss, misc as misc_nn_ops, sigmoid_focal_loss
from ...ops.feature_pyramid_network import LastLevelP6P7
from ...transforms._presets import ObjectDetection
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _COCO_CATEGORIES
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..resnet import resnet50, ResNet50_Weights
from . import _utils as det_utils
from .anchor_utils import AnchorGenerator
from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers
from .transform import GeneralizedRCNNTransform
__all__ = [
"FCOS",
"FCOS_ResNet50_FPN_Weights",
"fcos_resnet50_fpn",
]
class FCOSHead(nn.Module):
"""
A regression and classification head for use in FCOS.
Args:
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
num_classes (int): number of classes to be predicted
num_convs (Optional[int]): number of conv layer of head. Default: 4.
"""
__annotations__ = {
"box_coder": det_utils.BoxLinearCoder,
}
def __init__(self, in_channels: int, num_anchors: int, num_classes: int, num_convs: Optional[int] = 4) -> None:
super().__init__()
self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True)
self.classification_head = FCOSClassificationHead(in_channels, num_anchors, num_classes, num_convs)
self.regression_head = FCOSRegressionHead(in_channels, num_anchors, num_convs)
def compute_loss(
self,
targets: List[Dict[str, Tensor]],
head_outputs: Dict[str, Tensor],
anchors: List[Tensor],
matched_idxs: List[Tensor],
) -> Dict[str, Tensor]:
cls_logits = head_outputs["cls_logits"] # [N, HWA, C]
bbox_regression = head_outputs["bbox_regression"] # [N, HWA, 4]
bbox_ctrness = head_outputs["bbox_ctrness"] # [N, HWA, 1]
all_gt_classes_targets = []
all_gt_boxes_targets = []
for targets_per_image, matched_idxs_per_image in zip(targets, matched_idxs):
if len(targets_per_image["labels"]) == 0:
gt_classes_targets = targets_per_image["labels"].new_zeros((len(matched_idxs_per_image),))
gt_boxes_targets = targets_per_image["boxes"].new_zeros((len(matched_idxs_per_image), 4))
else:
gt_classes_targets = targets_per_image["labels"][matched_idxs_per_image.clip(min=0)]
gt_boxes_targets = targets_per_image["boxes"][matched_idxs_per_image.clip(min=0)]
gt_classes_targets[matched_idxs_per_image < 0] = -1 # background
all_gt_classes_targets.append(gt_classes_targets)
all_gt_boxes_targets.append(gt_boxes_targets)
# List[Tensor] to Tensor conversion of `all_gt_boxes_target`, `all_gt_classes_targets` and `anchors`
all_gt_boxes_targets, all_gt_classes_targets, anchors = (
torch.stack(all_gt_boxes_targets),
torch.stack(all_gt_classes_targets),
torch.stack(anchors),
)
# compute foregroud
foregroud_mask = all_gt_classes_targets >= 0
num_foreground = foregroud_mask.sum().item()
# classification loss
gt_classes_targets = torch.zeros_like(cls_logits)
gt_classes_targets[foregroud_mask, all_gt_classes_targets[foregroud_mask]] = 1.0
loss_cls = sigmoid_focal_loss(cls_logits, gt_classes_targets, reduction="sum")
# amp issue: pred_boxes need to convert float
pred_boxes = self.box_coder.decode(bbox_regression, anchors)
# regression loss: GIoU loss
loss_bbox_reg = generalized_box_iou_loss(
pred_boxes[foregroud_mask],
all_gt_boxes_targets[foregroud_mask],
reduction="sum",
)
# ctrness loss
bbox_reg_targets = self.box_coder.encode(anchors, all_gt_boxes_targets)
if len(bbox_reg_targets) == 0:
gt_ctrness_targets = bbox_reg_targets.new_zeros(bbox_reg_targets.size()[:-1])
else:
left_right = bbox_reg_targets[:, :, [0, 2]]
top_bottom = bbox_reg_targets[:, :, [1, 3]]
gt_ctrness_targets = torch.sqrt(
(left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0])
* (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
)
pred_centerness = bbox_ctrness.squeeze(dim=2)
loss_bbox_ctrness = nn.functional.binary_cross_entropy_with_logits(
pred_centerness[foregroud_mask], gt_ctrness_targets[foregroud_mask], reduction="sum"
)
return {
"classification": loss_cls / max(1, num_foreground),
"bbox_regression": loss_bbox_reg / max(1, num_foreground),
"bbox_ctrness": loss_bbox_ctrness / max(1, num_foreground),
}
def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
cls_logits = self.classification_head(x)
bbox_regression, bbox_ctrness = self.regression_head(x)
return {
"cls_logits": cls_logits,
"bbox_regression": bbox_regression,
"bbox_ctrness": bbox_ctrness,
}
class FCOSClassificationHead(nn.Module):
"""
A classification head for use in FCOS.
Args:
in_channels (int): number of channels of the input feature.
num_anchors (int): number of anchors to be predicted.
num_classes (int): number of classes to be predicted.
num_convs (Optional[int]): number of conv layer. Default: 4.
prior_probability (Optional[float]): probability of prior. Default: 0.01.
norm_layer: Module specifying the normalization layer to use.
"""
def __init__(
self,
in_channels: int,
num_anchors: int,
num_classes: int,
num_convs: int = 4,
prior_probability: float = 0.01,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
self.num_classes = num_classes
self.num_anchors = num_anchors
if norm_layer is None:
norm_layer = partial(nn.GroupNorm, 32)
conv = []
for _ in range(num_convs):
conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
conv.append(norm_layer(in_channels))
conv.append(nn.ReLU())
self.conv = nn.Sequential(*conv)
for layer in self.conv.children():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.constant_(layer.bias, 0)
self.cls_logits = nn.Conv2d(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
torch.nn.init.normal_(self.cls_logits.weight, std=0.01)
torch.nn.init.constant_(self.cls_logits.bias, -math.log((1 - prior_probability) / prior_probability))
def forward(self, x: List[Tensor]) -> Tensor:
all_cls_logits = []
for features in x:
cls_logits = self.conv(features)
cls_logits = self.cls_logits(cls_logits)
# Permute classification output from (N, A * K, H, W) to (N, HWA, K).
N, _, H, W = cls_logits.shape
cls_logits = cls_logits.view(N, -1, self.num_classes, H, W)
cls_logits = cls_logits.permute(0, 3, 4, 1, 2)
cls_logits = cls_logits.reshape(N, -1, self.num_classes) # Size=(N, HWA, 4)
all_cls_logits.append(cls_logits)
return torch.cat(all_cls_logits, dim=1)
class FCOSRegressionHead(nn.Module):
"""
A regression head for use in FCOS, which combines regression branch and center-ness branch.
This can obtain better performance.
Reference: `FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_.
Args:
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
num_convs (Optional[int]): number of conv layer. Default: 4.
norm_layer: Module specifying the normalization layer to use.
"""
def __init__(
self,
in_channels: int,
num_anchors: int,
num_convs: int = 4,
norm_layer: Optional[Callable[..., nn.Module]] = None,
):
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.GroupNorm, 32)
conv = []
for _ in range(num_convs):
conv.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1))
conv.append(norm_layer(in_channels))
conv.append(nn.ReLU())
self.conv = nn.Sequential(*conv)
self.bbox_reg = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=3, stride=1, padding=1)
self.bbox_ctrness = nn.Conv2d(in_channels, num_anchors * 1, kernel_size=3, stride=1, padding=1)
for layer in [self.bbox_reg, self.bbox_ctrness]:
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.zeros_(layer.bias)
for layer in self.conv.children():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.zeros_(layer.bias)
def forward(self, x: List[Tensor]) -> Tuple[Tensor, Tensor]:
all_bbox_regression = []
all_bbox_ctrness = []
for features in x:
bbox_feature = self.conv(features)
bbox_regression = nn.functional.relu(self.bbox_reg(bbox_feature))
bbox_ctrness = self.bbox_ctrness(bbox_feature)
# permute bbox regression output from (N, 4 * A, H, W) to (N, HWA, 4).
N, _, H, W = bbox_regression.shape
bbox_regression = bbox_regression.view(N, -1, 4, H, W)
bbox_regression = bbox_regression.permute(0, 3, 4, 1, 2)
bbox_regression = bbox_regression.reshape(N, -1, 4) # Size=(N, HWA, 4)
all_bbox_regression.append(bbox_regression)
# permute bbox ctrness output from (N, 1 * A, H, W) to (N, HWA, 1).
bbox_ctrness = bbox_ctrness.view(N, -1, 1, H, W)
bbox_ctrness = bbox_ctrness.permute(0, 3, 4, 1, 2)
bbox_ctrness = bbox_ctrness.reshape(N, -1, 1)
all_bbox_ctrness.append(bbox_ctrness)
return torch.cat(all_bbox_regression, dim=1), torch.cat(all_bbox_ctrness, dim=1)
class FCOS(nn.Module):
"""
Implements FCOS.
The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
image, and should be in 0-1 range. Different images can have different sizes.
The behavior of the model changes depending on if it is in training or evaluation mode.
During training, the model expects both the input tensors and targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the class label for each ground-truth box
The model returns a Dict[Tensor] during training, containing the classification, regression
and centerness losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
follows:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (Int64Tensor[N]): the predicted labels for each image
- scores (Tensor[N]): the scores for each prediction
Args:
backbone (nn.Module): the network used to compute the features for the model.
It should contain an out_channels attribute, which indicates the number of output
channels that each feature map has (and it should be the same for all feature maps).
The backbone should return a single Tensor or an OrderedDict[Tensor].
num_classes (int): number of output classes of the model (including the background).
min_size (int): Images are rescaled before feeding them to the backbone:
we attempt to preserve the aspect ratio and scale the shorter edge
to ``min_size``. If the resulting longer edge exceeds ``max_size``,
then downscale so that the longer edge does not exceed ``max_size``.
This may result in the shorter edge beeing lower than ``min_size``.
max_size (int): See ``min_size``.
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
image_std (Tuple[float, float, float]): std values used for input normalization.
They are generally the std values of the dataset on which the backbone has been trained on
anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
maps. For FCOS, only set one anchor for per position of each level, the width and height equal to
the stride of feature map, and set aspect ratio = 1.0, so the center of anchor is equivalent to the point
in FCOS paper.
head (nn.Module): Module run on top of the feature pyramid.
Defaults to a module containing a classification and regression module.
center_sampling_radius (int): radius of the "center" of a groundtruth box,
within which all anchor points are labeled positive.
score_thresh (float): Score threshold used for postprocessing the detections.
nms_thresh (float): NMS threshold used for postprocessing the detections.
detections_per_img (int): Number of best detections to keep after NMS.
topk_candidates (int): Number of best detections to keep before NMS.
Example:
>>> import torch
>>> import torchvision
>>> from torchvision.models.detection import FCOS
>>> from torchvision.models.detection.anchor_utils import AnchorGenerator
>>> # load a pre-trained model for classification and return
>>> # only the features
>>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
>>> # FCOS needs to know the number of
>>> # output channels in a backbone. For mobilenet_v2, it's 1280,
>>> # so we need to add it here
>>> backbone.out_channels = 1280
>>>
>>> # let's make the network generate 5 x 3 anchors per spatial
>>> # location, with 5 different sizes and 3 different aspect
>>> # ratios. We have a Tuple[Tuple[int]] because each feature
>>> # map could potentially have different sizes and
>>> # aspect ratios
>>> anchor_generator = AnchorGenerator(
>>> sizes=((8,), (16,), (32,), (64,), (128,)),
>>> aspect_ratios=((1.0,),)
>>> )
>>>
>>> # put the pieces together inside a FCOS model
>>> model = FCOS(
>>> backbone,
>>> num_classes=80,
>>> anchor_generator=anchor_generator,
>>> )
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
"""
__annotations__ = {
"box_coder": det_utils.BoxLinearCoder,
}
def __init__(
self,
backbone: nn.Module,
num_classes: int,
# transform parameters
min_size: int = 800,
max_size: int = 1333,
image_mean: Optional[List[float]] = None,
image_std: Optional[List[float]] = None,
# Anchor parameters
anchor_generator: Optional[AnchorGenerator] = None,
head: Optional[nn.Module] = None,
center_sampling_radius: float = 1.5,
score_thresh: float = 0.2,
nms_thresh: float = 0.6,
detections_per_img: int = 100,
topk_candidates: int = 1000,
**kwargs,
):
super().__init__()
_log_api_usage_once(self)
if not hasattr(backbone, "out_channels"):
raise ValueError(
"backbone should contain an attribute out_channels "
"specifying the number of output channels (assumed to be the "
"same for all the levels)"
)
self.backbone = backbone
if not isinstance(anchor_generator, (AnchorGenerator, type(None))):
raise TypeError(
f"anchor_generator should be of type AnchorGenerator or None, instead got {type(anchor_generator)}"
)
if anchor_generator is None:
anchor_sizes = ((8,), (16,), (32,), (64,), (128,)) # equal to strides of multi-level feature map
aspect_ratios = ((1.0,),) * len(anchor_sizes) # set only one anchor
anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
self.anchor_generator = anchor_generator
if self.anchor_generator.num_anchors_per_location()[0] != 1:
raise ValueError(
f"anchor_generator.num_anchors_per_location()[0] should be 1 instead of {anchor_generator.num_anchors_per_location()[0]}"
)
if head is None:
head = FCOSHead(backbone.out_channels, anchor_generator.num_anchors_per_location()[0], num_classes)
self.head = head
self.box_coder = det_utils.BoxLinearCoder(normalize_by_size=True)
if image_mean is None:
image_mean = [0.485, 0.456, 0.406]
if image_std is None:
image_std = [0.229, 0.224, 0.225]
self.transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
self.center_sampling_radius = center_sampling_radius
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.detections_per_img = detections_per_img
self.topk_candidates = topk_candidates
# used only on torchscript mode
self._has_warned = False
@torch.jit.unused
def eager_outputs(
self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
if self.training:
return losses
return detections
def compute_loss(
self,
targets: List[Dict[str, Tensor]],
head_outputs: Dict[str, Tensor],
anchors: List[Tensor],
num_anchors_per_level: List[int],
) -> Dict[str, Tensor]:
matched_idxs = []
for anchors_per_image, targets_per_image in zip(anchors, targets):
if targets_per_image["boxes"].numel() == 0:
matched_idxs.append(
torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device)
)
continue
gt_boxes = targets_per_image["boxes"]
gt_centers = (gt_boxes[:, :2] + gt_boxes[:, 2:]) / 2 # Nx2
anchor_centers = (anchors_per_image[:, :2] + anchors_per_image[:, 2:]) / 2 # N
anchor_sizes = anchors_per_image[:, 2] - anchors_per_image[:, 0]
# center sampling: anchor point must be close enough to gt center.
pairwise_match = (anchor_centers[:, None, :] - gt_centers[None, :, :]).abs_().max(
dim=2
).values < self.center_sampling_radius * anchor_sizes[:, None]
# compute pairwise distance between N points and M boxes
x, y = anchor_centers.unsqueeze(dim=2).unbind(dim=1) # (N, 1)
x0, y0, x1, y1 = gt_boxes.unsqueeze(dim=0).unbind(dim=2) # (1, M)
pairwise_dist = torch.stack([x - x0, y - y0, x1 - x, y1 - y], dim=2) # (N, M)
# anchor point must be inside gt
pairwise_match &= pairwise_dist.min(dim=2).values > 0
# each anchor is only responsible for certain scale range.
lower_bound = anchor_sizes * 4
lower_bound[: num_anchors_per_level[0]] = 0
upper_bound = anchor_sizes * 8
upper_bound[-num_anchors_per_level[-1] :] = float("inf")
pairwise_dist = pairwise_dist.max(dim=2).values
pairwise_match &= (pairwise_dist > lower_bound[:, None]) & (pairwise_dist < upper_bound[:, None])
# match the GT box with minimum area, if there are multiple GT matches
gt_areas = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1]) # N
pairwise_match = pairwise_match.to(torch.float32) * (1e8 - gt_areas[None, :])
min_values, matched_idx = pairwise_match.max(dim=1) # R, per-anchor match
matched_idx[min_values < 1e-5] = -1 # unmatched anchors are assigned -1
matched_idxs.append(matched_idx)
return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs)
def postprocess_detections(
self, head_outputs: Dict[str, List[Tensor]], anchors: List[List[Tensor]], image_shapes: List[Tuple[int, int]]
) -> List[Dict[str, Tensor]]:
class_logits = head_outputs["cls_logits"]
box_regression = head_outputs["bbox_regression"]
box_ctrness = head_outputs["bbox_ctrness"]
num_images = len(image_shapes)
detections: List[Dict[str, Tensor]] = []
for index in range(num_images):
box_regression_per_image = [br[index] for br in box_regression]
logits_per_image = [cl[index] for cl in class_logits]
box_ctrness_per_image = [bc[index] for bc in box_ctrness]
anchors_per_image, image_shape = anchors[index], image_shapes[index]
image_boxes = []
image_scores = []
image_labels = []
for box_regression_per_level, logits_per_level, box_ctrness_per_level, anchors_per_level in zip(
box_regression_per_image, logits_per_image, box_ctrness_per_image, anchors_per_image
):
num_classes = logits_per_level.shape[-1]
# remove low scoring boxes
scores_per_level = torch.sqrt(
torch.sigmoid(logits_per_level) * torch.sigmoid(box_ctrness_per_level)
).flatten()
keep_idxs = scores_per_level > self.score_thresh
scores_per_level = scores_per_level[keep_idxs]
topk_idxs = torch.where(keep_idxs)[0]
# keep only topk scoring predictions
num_topk = det_utils._topk_min(topk_idxs, self.topk_candidates, 0)
scores_per_level, idxs = scores_per_level.topk(num_topk)
topk_idxs = topk_idxs[idxs]
anchor_idxs = torch.div(topk_idxs, num_classes, rounding_mode="floor")
labels_per_level = topk_idxs % num_classes
boxes_per_level = self.box_coder.decode(
box_regression_per_level[anchor_idxs], anchors_per_level[anchor_idxs]
)
boxes_per_level = box_ops.clip_boxes_to_image(boxes_per_level, image_shape)
image_boxes.append(boxes_per_level)
image_scores.append(scores_per_level)
image_labels.append(labels_per_level)
image_boxes = torch.cat(image_boxes, dim=0)
image_scores = torch.cat(image_scores, dim=0)
image_labels = torch.cat(image_labels, dim=0)
# non-maximum suppression
keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
keep = keep[: self.detections_per_img]
detections.append(
{
"boxes": image_boxes[keep],
"scores": image_scores[keep],
"labels": image_labels[keep],
}
)
return detections
def forward(
self,
images: List[Tensor],
targets: Optional[List[Dict[str, Tensor]]] = None,
) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
"""
Args:
images (list[Tensor]): images to be processed
targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)
Returns:
result (list[BoxList] or dict[Tensor]): the output from the model.
During training, it returns a dict[Tensor] which contains the losses.
During testing, it returns list[BoxList] contains additional fields
like `scores`, `labels` and `mask` (for Mask R-CNN models).
"""
if self.training:
if targets is None:
torch._assert(False, "targets should not be none when in training mode")
else:
for target in targets:
boxes = target["boxes"]
torch._assert(isinstance(boxes, torch.Tensor), "Expected target boxes to be of type Tensor.")
torch._assert(
len(boxes.shape) == 2 and boxes.shape[-1] == 4,
f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
)
original_image_sizes: List[Tuple[int, int]] = []
for img in images:
val = img.shape[-2:]
torch._assert(
len(val) == 2,
f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
)
original_image_sizes.append((val[0], val[1]))
# transform the input
images, targets = self.transform(images, targets)
# Check for degenerate boxes
if targets is not None:
for target_idx, target in enumerate(targets):
boxes = target["boxes"]
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
if degenerate_boxes.any():
# print the first degenerate box
bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
degen_bb: List[float] = boxes[bb_idx].tolist()
torch._assert(
False,
f"All bounding boxes should have positive height and width. Found invalid box {degen_bb} for target at index {target_idx}.",
)
# get the features from the backbone
features = self.backbone(images.tensors)
if isinstance(features, torch.Tensor):
features = OrderedDict([("0", features)])
features = list(features.values())
# compute the fcos heads outputs using the features
head_outputs = self.head(features)
# create the set of anchors
anchors = self.anchor_generator(images, features)
# recover level sizes
num_anchors_per_level = [x.size(2) * x.size(3) for x in features]
losses = {}
detections: List[Dict[str, Tensor]] = []
if self.training:
if targets is None:
torch._assert(False, "targets should not be none when in training mode")
else:
# compute the losses
losses = self.compute_loss(targets, head_outputs, anchors, num_anchors_per_level)
else:
# split outputs per level
split_head_outputs: Dict[str, List[Tensor]] = {}
for k in head_outputs:
split_head_outputs[k] = list(head_outputs[k].split(num_anchors_per_level, dim=1))
split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors]
# compute the detections
detections = self.postprocess_detections(split_head_outputs, split_anchors, images.image_sizes)
detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)
if torch.jit.is_scripting():
if not self._has_warned:
warnings.warn("FCOS always returns a (Losses, Detections) tuple in scripting")
self._has_warned = True
return losses, detections
return self.eager_outputs(losses, detections)
class FCOS_ResNet50_FPN_Weights(WeightsEnum):
COCO_V1 = Weights(
url="https://download.pytorch.org/models/fcos_resnet50_fpn_coco-99b0c9b7.pth",
transforms=ObjectDetection,
meta={
"num_params": 32269600,
"categories": _COCO_CATEGORIES,
"min_size": (1, 1),
"recipe": "https://github.com/pytorch/vision/tree/main/references/detection#fcos-resnet-50-fpn",
"_metrics": {
"COCO-val2017": {
"box_map": 39.2,
}
},
"_ops": 128.207,
"_file_size": 123.608,
"_docs": """These weights were produced by following a similar training recipe as on the paper.""",
},
)
DEFAULT = COCO_V1
@register_model()
@handle_legacy_interface(
weights=("pretrained", FCOS_ResNet50_FPN_Weights.COCO_V1),
weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
def fcos_resnet50_fpn(
*,
weights: Optional[FCOS_ResNet50_FPN_Weights] = None,
progress: bool = True,
num_classes: Optional[int] = None,
weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
trainable_backbone_layers: Optional[int] = None,
**kwargs: Any,
) -> FCOS:
"""
Constructs a FCOS model with a ResNet-50-FPN backbone.
.. betastatus:: detection module
Reference: `FCOS: Fully Convolutional One-Stage Object Detection <https://arxiv.org/abs/1904.01355>`_.
`FCOS: A simple and strong anchor-free object detector <https://arxiv.org/abs/2006.09214>`_.
The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
image, and should be in ``0-1`` range. Different images can have different sizes.
The behavior of the model changes depending on if it is in training or evaluation mode.
During training, the model expects both the input tensors and targets (list of dictionary),
containing:
- boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (``Int64Tensor[N]``): the class label for each ground-truth box
The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
losses.
During inference, the model requires only the input tensors, and returns the post-processed
predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
follows, where ``N`` is the number of detections:
- boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
- labels (``Int64Tensor[N]``): the predicted labels for each detection
- scores (``Tensor[N]``): the scores of each detection
For more details on the output, you may refer to :ref:`instance_seg_output`.
Example:
>>> model = torchvision.models.detection.fcos_resnet50_fpn(weights=FCOS_ResNet50_FPN_Weights.DEFAULT)
>>> model.eval()
>>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
>>> predictions = model(x)
Args:
weights (:class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.detection.FCOS_ResNet50_FPN_Weights`
below for more details, and possible values. By default, no
pre-trained weights are used.
progress (bool): If True, displays a progress bar of the download to stderr
num_classes (int, optional): number of output classes of the model (including the background)
weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights for
the backbone.
trainable_backbone_layers (int, optional): number of trainable (not frozen) resnet layers starting
from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
trainable. If ``None`` is passed (the default) this value is set to 3. Default: None
**kwargs: parameters passed to the ``torchvision.models.detection.FCOS``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/detection/fcos.py>`_
for more details about this class.
.. autoclass:: torchvision.models.detection.FCOS_ResNet50_FPN_Weights
:members:
"""
weights = FCOS_ResNet50_FPN_Weights.verify(weights)
weights_backbone = ResNet50_Weights.verify(weights_backbone)
if weights is not None:
weights_backbone = None
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
elif num_classes is None:
num_classes = 91
is_trained = weights is not None or weights_backbone is not None
trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
backbone = _resnet_fpn_extractor(
backbone, trainable_backbone_layers, returned_layers=[2, 3, 4], extra_blocks=LastLevelP6P7(256, 256)
)
model = FCOS(backbone, num_classes, **kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
|