File size: 5,533 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

from torch import Tensor

from .folder import find_classes, make_dataset
from .video_utils import VideoClips
from .vision import VisionDataset


class UCF101(VisionDataset):
    """
    `UCF101 <https://www.crcv.ucf.edu/data/UCF101.php>`_ dataset.

    UCF101 is an action recognition video dataset.
    This dataset consider every video as a collection of video clips of fixed size, specified
    by ``frames_per_clip``, where the step in frames between each clip is given by
    ``step_between_clips``. The dataset itself can be downloaded from the dataset website;
    annotations that ``annotation_path`` should be pointing to can be downloaded from `here
    <https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip>`_.

    To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
    and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
    elements will come from video 1, and the next three elements from video 2.
    Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
    frames in a video might be present.

    Internally, it uses a VideoClips object to handle clip creation.

    Args:
        root (str or ``pathlib.Path``): Root directory of the UCF101 Dataset.
        annotation_path (str): path to the folder containing the split files;
            see docstring above for download instructions of these files
        frames_per_clip (int): number of frames in a clip.
        step_between_clips (int, optional): number of frames between each clip.
        fold (int, optional): which fold to use. Should be between 1 and 3.
        train (bool, optional): if ``True``, creates a dataset from the train split,
            otherwise from the ``test`` split.
        transform (callable, optional): A function/transform that takes in a TxHxWxC video
            and returns a transformed version.
        output_format (str, optional): The format of the output video tensors (before transforms).
            Can be either "THWC" (default) or "TCHW".

    Returns:
        tuple: A 3-tuple with the following entries:

            - video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames
            -  audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
               and `L` is the number of points
            - label (int): class of the video clip
    """

    def __init__(
        self,
        root: Union[str, Path],
        annotation_path: str,
        frames_per_clip: int,
        step_between_clips: int = 1,
        frame_rate: Optional[int] = None,
        fold: int = 1,
        train: bool = True,
        transform: Optional[Callable] = None,
        _precomputed_metadata: Optional[Dict[str, Any]] = None,
        num_workers: int = 1,
        _video_width: int = 0,
        _video_height: int = 0,
        _video_min_dimension: int = 0,
        _audio_samples: int = 0,
        output_format: str = "THWC",
    ) -> None:
        super().__init__(root)
        if not 1 <= fold <= 3:
            raise ValueError(f"fold should be between 1 and 3, got {fold}")

        extensions = ("avi",)
        self.fold = fold
        self.train = train

        self.classes, class_to_idx = find_classes(self.root)
        self.samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file=None)
        video_list = [x[0] for x in self.samples]
        video_clips = VideoClips(
            video_list,
            frames_per_clip,
            step_between_clips,
            frame_rate,
            _precomputed_metadata,
            num_workers=num_workers,
            _video_width=_video_width,
            _video_height=_video_height,
            _video_min_dimension=_video_min_dimension,
            _audio_samples=_audio_samples,
            output_format=output_format,
        )
        # we bookkeep the full version of video clips because we want to be able
        # to return the metadata of full version rather than the subset version of
        # video clips
        self.full_video_clips = video_clips
        self.indices = self._select_fold(video_list, annotation_path, fold, train)
        self.video_clips = video_clips.subset(self.indices)
        self.transform = transform

    @property
    def metadata(self) -> Dict[str, Any]:
        return self.full_video_clips.metadata

    def _select_fold(self, video_list: List[str], annotation_path: str, fold: int, train: bool) -> List[int]:
        name = "train" if train else "test"
        name = f"{name}list{fold:02d}.txt"
        f = os.path.join(annotation_path, name)
        selected_files = set()
        with open(f) as fid:
            data = fid.readlines()
            data = [x.strip().split(" ")[0] for x in data]
            data = [os.path.join(self.root, *x.split("/")) for x in data]
            selected_files.update(data)
        indices = [i for i in range(len(video_list)) if video_list[i] in selected_files]
        return indices

    def __len__(self) -> int:
        return self.video_clips.num_clips()

    def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
        video, audio, info, video_idx = self.video_clips.get_clip(idx)
        label = self.samples[self.indices[video_idx]][1]

        if self.transform is not None:
            video = self.transform(video)

        return video, audio, label