File size: 7,868 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
from pathlib import Path
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from PIL import Image
from .utils import download_url
from .vision import VisionDataset
class PhotoTour(VisionDataset):
"""`Multi-view Stereo Correspondence <http://matthewalunbrown.com/patchdata/patchdata.html>`_ Dataset.
.. note::
We only provide the newer version of the dataset, since the authors state that it
is more suitable for training descriptors based on difference of Gaussian, or Harris corners, as the
patches are centred on real interest point detections, rather than being projections of 3D points as is the
case in the old dataset.
The original dataset is available under http://phototour.cs.washington.edu/patches/default.htm.
Args:
root (str or ``pathlib.Path``): Root directory where images are.
name (string): Name of the dataset to load.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
urls = {
"notredame_harris": [
"http://matthewalunbrown.com/patchdata/notredame_harris.zip",
"notredame_harris.zip",
"69f8c90f78e171349abdf0307afefe4d",
],
"yosemite_harris": [
"http://matthewalunbrown.com/patchdata/yosemite_harris.zip",
"yosemite_harris.zip",
"a73253d1c6fbd3ba2613c45065c00d46",
],
"liberty_harris": [
"http://matthewalunbrown.com/patchdata/liberty_harris.zip",
"liberty_harris.zip",
"c731fcfb3abb4091110d0ae8c7ba182c",
],
"notredame": [
"http://icvl.ee.ic.ac.uk/vbalnt/notredame.zip",
"notredame.zip",
"509eda8535847b8c0a90bbb210c83484",
],
"yosemite": ["http://icvl.ee.ic.ac.uk/vbalnt/yosemite.zip", "yosemite.zip", "533b2e8eb7ede31be40abc317b2fd4f0"],
"liberty": ["http://icvl.ee.ic.ac.uk/vbalnt/liberty.zip", "liberty.zip", "fdd9152f138ea5ef2091746689176414"],
}
means = {
"notredame": 0.4854,
"yosemite": 0.4844,
"liberty": 0.4437,
"notredame_harris": 0.4854,
"yosemite_harris": 0.4844,
"liberty_harris": 0.4437,
}
stds = {
"notredame": 0.1864,
"yosemite": 0.1818,
"liberty": 0.2019,
"notredame_harris": 0.1864,
"yosemite_harris": 0.1818,
"liberty_harris": 0.2019,
}
lens = {
"notredame": 468159,
"yosemite": 633587,
"liberty": 450092,
"liberty_harris": 379587,
"yosemite_harris": 450912,
"notredame_harris": 325295,
}
image_ext = "bmp"
info_file = "info.txt"
matches_files = "m50_100000_100000_0.txt"
def __init__(
self,
root: Union[str, Path],
name: str,
train: bool = True,
transform: Optional[Callable] = None,
download: bool = False,
) -> None:
super().__init__(root, transform=transform)
self.name = name
self.data_dir = os.path.join(self.root, name)
self.data_down = os.path.join(self.root, f"{name}.zip")
self.data_file = os.path.join(self.root, f"{name}.pt")
self.train = train
self.mean = self.means[name]
self.std = self.stds[name]
if download:
self.download()
if not self._check_datafile_exists():
self.cache()
# load the serialized data
self.data, self.labels, self.matches = torch.load(self.data_file, weights_only=True)
def __getitem__(self, index: int) -> Union[torch.Tensor, Tuple[Any, Any, torch.Tensor]]:
"""
Args:
index (int): Index
Returns:
tuple: (data1, data2, matches)
"""
if self.train:
data = self.data[index]
if self.transform is not None:
data = self.transform(data)
return data
m = self.matches[index]
data1, data2 = self.data[m[0]], self.data[m[1]]
if self.transform is not None:
data1 = self.transform(data1)
data2 = self.transform(data2)
return data1, data2, m[2]
def __len__(self) -> int:
return len(self.data if self.train else self.matches)
def _check_datafile_exists(self) -> bool:
return os.path.exists(self.data_file)
def _check_downloaded(self) -> bool:
return os.path.exists(self.data_dir)
def download(self) -> None:
if self._check_datafile_exists():
return
if not self._check_downloaded():
# download files
url = self.urls[self.name][0]
filename = self.urls[self.name][1]
md5 = self.urls[self.name][2]
fpath = os.path.join(self.root, filename)
download_url(url, self.root, filename, md5)
import zipfile
with zipfile.ZipFile(fpath, "r") as z:
z.extractall(self.data_dir)
os.unlink(fpath)
def cache(self) -> None:
# process and save as torch files
dataset = (
read_image_file(self.data_dir, self.image_ext, self.lens[self.name]),
read_info_file(self.data_dir, self.info_file),
read_matches_files(self.data_dir, self.matches_files),
)
with open(self.data_file, "wb") as f:
torch.save(dataset, f)
def extra_repr(self) -> str:
split = "Train" if self.train is True else "Test"
return f"Split: {split}"
def read_image_file(data_dir: str, image_ext: str, n: int) -> torch.Tensor:
"""Return a Tensor containing the patches"""
def PIL2array(_img: Image.Image) -> np.ndarray:
"""Convert PIL image type to numpy 2D array"""
return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64)
def find_files(_data_dir: str, _image_ext: str) -> List[str]:
"""Return a list with the file names of the images containing the patches"""
files = []
# find those files with the specified extension
for file_dir in os.listdir(_data_dir):
if file_dir.endswith(_image_ext):
files.append(os.path.join(_data_dir, file_dir))
return sorted(files) # sort files in ascend order to keep relations
patches = []
list_files = find_files(data_dir, image_ext)
for fpath in list_files:
img = Image.open(fpath)
for y in range(0, img.height, 64):
for x in range(0, img.width, 64):
patch = img.crop((x, y, x + 64, y + 64))
patches.append(PIL2array(patch))
return torch.ByteTensor(np.array(patches[:n]))
def read_info_file(data_dir: str, info_file: str) -> torch.Tensor:
"""Return a Tensor containing the list of labels
Read the file and keep only the ID of the 3D point.
"""
with open(os.path.join(data_dir, info_file)) as f:
labels = [int(line.split()[0]) for line in f]
return torch.LongTensor(labels)
def read_matches_files(data_dir: str, matches_file: str) -> torch.Tensor:
"""Return a Tensor containing the ground truth matches
Read the file and keep only 3D point ID.
Matches are represented with a 1, non matches with a 0.
"""
matches = []
with open(os.path.join(data_dir, matches_file)) as f:
for line in f:
line_split = line.split()
matches.append([int(line_split[0]), int(line_split[3]), int(line_split[1] == line_split[4])])
return torch.LongTensor(matches)
|