File size: 21,806 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import codecs
import os
import os.path
import shutil
import string
import sys
import warnings
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from urllib.error import URLError

import numpy as np
import torch
from PIL import Image

from .utils import _flip_byte_order, check_integrity, download_and_extract_archive, extract_archive, verify_str_arg
from .vision import VisionDataset


class MNIST(VisionDataset):
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory of dataset where ``MNIST/raw/train-images-idx3-ubyte``
            and  ``MNIST/raw/t10k-images-idx3-ubyte`` exist.
        train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``,
            otherwise from ``t10k-images-idx3-ubyte``.
        transform (callable, optional): A function/transform that  takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If True, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

    mirrors = [
        "https://ossci-datasets.s3.amazonaws.com/mnist/",
        "http://yann.lecun.com/exdb/mnist/",
    ]

    resources = [
        ("train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873"),
        ("train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432"),
        ("t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3"),
        ("t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c"),
    ]

    training_file = "training.pt"
    test_file = "test.pt"
    classes = [
        "0 - zero",
        "1 - one",
        "2 - two",
        "3 - three",
        "4 - four",
        "5 - five",
        "6 - six",
        "7 - seven",
        "8 - eight",
        "9 - nine",
    ]

    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

    def __init__(
        self,
        root: Union[str, Path],
        train: bool = True,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
    ) -> None:
        super().__init__(root, transform=transform, target_transform=target_transform)
        self.train = train  # training set or test set

        if self._check_legacy_exist():
            self.data, self.targets = self._load_legacy_data()
            return

        if download:
            self.download()

        if not self._check_exists():
            raise RuntimeError("Dataset not found. You can use download=True to download it")

        self.data, self.targets = self._load_data()

    def _check_legacy_exist(self):
        processed_folder_exists = os.path.exists(self.processed_folder)
        if not processed_folder_exists:
            return False

        return all(
            check_integrity(os.path.join(self.processed_folder, file)) for file in (self.training_file, self.test_file)
        )

    def _load_legacy_data(self):
        # This is for BC only. We no longer cache the data in a custom binary, but simply read from the raw data
        # directly.
        data_file = self.training_file if self.train else self.test_file
        return torch.load(os.path.join(self.processed_folder, data_file), weights_only=True)

    def _load_data(self):
        image_file = f"{'train' if self.train else 't10k'}-images-idx3-ubyte"
        data = read_image_file(os.path.join(self.raw_folder, image_file))

        label_file = f"{'train' if self.train else 't10k'}-labels-idx1-ubyte"
        targets = read_label_file(os.path.join(self.raw_folder, label_file))

        return data, targets

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        img, target = self.data[index], int(self.targets[index])

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode="L")

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self) -> int:
        return len(self.data)

    @property
    def raw_folder(self) -> str:
        return os.path.join(self.root, self.__class__.__name__, "raw")

    @property
    def processed_folder(self) -> str:
        return os.path.join(self.root, self.__class__.__name__, "processed")

    @property
    def class_to_idx(self) -> Dict[str, int]:
        return {_class: i for i, _class in enumerate(self.classes)}

    def _check_exists(self) -> bool:
        return all(
            check_integrity(os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0]))
            for url, _ in self.resources
        )

    def download(self) -> None:
        """Download the MNIST data if it doesn't exist already."""

        if self._check_exists():
            return

        os.makedirs(self.raw_folder, exist_ok=True)

        # download files
        for filename, md5 in self.resources:
            errors = []
            for mirror in self.mirrors:
                url = f"{mirror}{filename}"
                try:
                    download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
                except URLError as e:
                    errors.append(e)
                    continue
                break
            else:
                s = f"Error downloading {filename}:\n"
                for mirror, err in zip(self.mirrors, errors):
                    s += f"Tried {mirror}, got:\n{str(err)}\n"
                raise RuntimeError(s)

    def extra_repr(self) -> str:
        split = "Train" if self.train is True else "Test"
        return f"Split: {split}"


class FashionMNIST(MNIST):
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory of dataset where ``FashionMNIST/raw/train-images-idx3-ubyte``
            and  ``FashionMNIST/raw/t10k-images-idx3-ubyte`` exist.
        train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``,
            otherwise from ``t10k-images-idx3-ubyte``.
        transform (callable, optional): A function/transform that  takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If True, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

    mirrors = ["http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/"]

    resources = [
        ("train-images-idx3-ubyte.gz", "8d4fb7e6c68d591d4c3dfef9ec88bf0d"),
        ("train-labels-idx1-ubyte.gz", "25c81989df183df01b3e8a0aad5dffbe"),
        ("t10k-images-idx3-ubyte.gz", "bef4ecab320f06d8554ea6380940ec79"),
        ("t10k-labels-idx1-ubyte.gz", "bb300cfdad3c16e7a12a480ee83cd310"),
    ]
    classes = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]


class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory of dataset where ``KMNIST/raw/train-images-idx3-ubyte``
            and  ``KMNIST/raw/t10k-images-idx3-ubyte`` exist.
        train (bool, optional): If True, creates dataset from ``train-images-idx3-ubyte``,
            otherwise from ``t10k-images-idx3-ubyte``.
        transform (callable, optional): A function/transform that  takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If True, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

    mirrors = ["http://codh.rois.ac.jp/kmnist/dataset/kmnist/"]

    resources = [
        ("train-images-idx3-ubyte.gz", "bdb82020997e1d708af4cf47b453dcf7"),
        ("train-labels-idx1-ubyte.gz", "e144d726b3acfaa3e44228e80efcd344"),
        ("t10k-images-idx3-ubyte.gz", "5c965bf0a639b31b8f53240b1b52f4d7"),
        ("t10k-labels-idx1-ubyte.gz", "7320c461ea6c1c855c0b718fb2a4b134"),
    ]
    classes = ["o", "ki", "su", "tsu", "na", "ha", "ma", "ya", "re", "wo"]


class EMNIST(MNIST):
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory of dataset where ``EMNIST/raw/train-images-idx3-ubyte``
            and  ``EMNIST/raw/t10k-images-idx3-ubyte`` exist.
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If True, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """

    url = "https://biometrics.nist.gov/cs_links/EMNIST/gzip.zip"
    md5 = "58c8d27c78d21e728a6bc7b3cc06412e"
    splits = ("byclass", "bymerge", "balanced", "letters", "digits", "mnist")
    # Merged Classes assumes Same structure for both uppercase and lowercase version
    _merged_classes = {"c", "i", "j", "k", "l", "m", "o", "p", "s", "u", "v", "w", "x", "y", "z"}
    _all_classes = set(string.digits + string.ascii_letters)
    classes_split_dict = {
        "byclass": sorted(list(_all_classes)),
        "bymerge": sorted(list(_all_classes - _merged_classes)),
        "balanced": sorted(list(_all_classes - _merged_classes)),
        "letters": ["N/A"] + list(string.ascii_lowercase),
        "digits": list(string.digits),
        "mnist": list(string.digits),
    }

    def __init__(self, root: Union[str, Path], split: str, **kwargs: Any) -> None:
        self.split = verify_str_arg(split, "split", self.splits)
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super().__init__(root, **kwargs)
        self.classes = self.classes_split_dict[self.split]

    @staticmethod
    def _training_file(split) -> str:
        return f"training_{split}.pt"

    @staticmethod
    def _test_file(split) -> str:
        return f"test_{split}.pt"

    @property
    def _file_prefix(self) -> str:
        return f"emnist-{self.split}-{'train' if self.train else 'test'}"

    @property
    def images_file(self) -> str:
        return os.path.join(self.raw_folder, f"{self._file_prefix}-images-idx3-ubyte")

    @property
    def labels_file(self) -> str:
        return os.path.join(self.raw_folder, f"{self._file_prefix}-labels-idx1-ubyte")

    def _load_data(self):
        return read_image_file(self.images_file), read_label_file(self.labels_file)

    def _check_exists(self) -> bool:
        return all(check_integrity(file) for file in (self.images_file, self.labels_file))

    def download(self) -> None:
        """Download the EMNIST data if it doesn't exist already."""

        if self._check_exists():
            return

        os.makedirs(self.raw_folder, exist_ok=True)

        download_and_extract_archive(self.url, download_root=self.raw_folder, md5=self.md5)
        gzip_folder = os.path.join(self.raw_folder, "gzip")
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith(".gz"):
                extract_archive(os.path.join(gzip_folder, gzip_file), self.raw_folder)
        shutil.rmtree(gzip_folder)


class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory of dataset whose ``raw``
            subdir contains binary files of the datasets.
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set or the testing set.  Default: True.
        download (bool, optional): If True, downloads the dataset from
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in a PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
    """

    subsets = {"train": "train", "test": "test", "test10k": "test", "test50k": "test", "nist": "nist"}
    resources: Dict[str, List[Tuple[str, str]]] = {  # type: ignore[assignment]
        "train": [
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz",
                "ed72d4157d28c017586c42bc6afe6370",
            ),
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz",
                "0058f8dd561b90ffdd0f734c6a30e5e4",
            ),
        ],
        "test": [
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz",
                "1394631089c404de565df7b7aeaf9412",
            ),
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz",
                "5b5b05890a5e13444e108efe57b788aa",
            ),
        ],
        "nist": [
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz",
                "7f124b3b8ab81486c9d8c2749c17f834",
            ),
            (
                "https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz",
                "5ed0e788978e45d4a8bd4b7caec3d79d",
            ),
        ],
    }
    classes = [
        "0 - zero",
        "1 - one",
        "2 - two",
        "3 - three",
        "4 - four",
        "5 - five",
        "6 - six",
        "7 - seven",
        "8 - eight",
        "9 - nine",
    ]

    def __init__(
        self, root: Union[str, Path], what: Optional[str] = None, compat: bool = True, train: bool = True, **kwargs: Any
    ) -> None:
        if what is None:
            what = "train" if train else "test"
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
        self.compat = compat
        self.data_file = what + ".pt"
        self.training_file = self.data_file
        self.test_file = self.data_file
        super().__init__(root, train, **kwargs)

    @property
    def images_file(self) -> str:
        (url, _), _ = self.resources[self.subsets[self.what]]
        return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0])

    @property
    def labels_file(self) -> str:
        _, (url, _) = self.resources[self.subsets[self.what]]
        return os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0])

    def _check_exists(self) -> bool:
        return all(check_integrity(file) for file in (self.images_file, self.labels_file))

    def _load_data(self):
        data = read_sn3_pascalvincent_tensor(self.images_file)
        if data.dtype != torch.uint8:
            raise TypeError(f"data should be of dtype torch.uint8 instead of {data.dtype}")
        if data.ndimension() != 3:
            raise ValueError("data should have 3 dimensions instead of {data.ndimension()}")

        targets = read_sn3_pascalvincent_tensor(self.labels_file).long()
        if targets.ndimension() != 2:
            raise ValueError(f"targets should have 2 dimensions instead of {targets.ndimension()}")

        if self.what == "test10k":
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
        elif self.what == "test50k":
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()

        return data, targets

    def download(self) -> None:
        """Download the QMNIST data if it doesn't exist already.
        Note that we only download what has been asked for (argument 'what').
        """
        if self._check_exists():
            return

        os.makedirs(self.raw_folder, exist_ok=True)
        split = self.resources[self.subsets[self.what]]

        for url, md5 in split:
            download_and_extract_archive(url, self.raw_folder, md5=md5)

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img.numpy(), mode="L")
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

    def extra_repr(self) -> str:
        return f"Split: {self.what}"


def get_int(b: bytes) -> int:
    return int(codecs.encode(b, "hex"), 16)


SN3_PASCALVINCENT_TYPEMAP = {
    8: torch.uint8,
    9: torch.int8,
    11: torch.int16,
    12: torch.int32,
    13: torch.float32,
    14: torch.float64,
}


def read_sn3_pascalvincent_tensor(path: str, strict: bool = True) -> torch.Tensor:
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
    Argument may be a filename, compressed filename, or file object.
    """
    # read
    with open(path, "rb") as f:
        data = f.read()

    # parse
    if sys.byteorder == "little" or sys.platform == "aix":
        magic = get_int(data[0:4])
        nd = magic % 256
        ty = magic // 256
    else:
        nd = get_int(data[0:1])
        ty = get_int(data[1:2]) + get_int(data[2:3]) * 256 + get_int(data[3:4]) * 256 * 256

    assert 1 <= nd <= 3
    assert 8 <= ty <= 14
    torch_type = SN3_PASCALVINCENT_TYPEMAP[ty]
    s = [get_int(data[4 * (i + 1) : 4 * (i + 2)]) for i in range(nd)]

    if sys.byteorder == "big" and not sys.platform == "aix":
        for i in range(len(s)):
            s[i] = int.from_bytes(s[i].to_bytes(4, byteorder="little"), byteorder="big", signed=False)

    parsed = torch.frombuffer(bytearray(data), dtype=torch_type, offset=(4 * (nd + 1)))

    # The MNIST format uses the big endian byte order, while `torch.frombuffer` uses whatever the system uses. In case
    # that is little endian and the dtype has more than one byte, we need to flip them.
    if sys.byteorder == "little" and parsed.element_size() > 1:
        parsed = _flip_byte_order(parsed)

    assert parsed.shape[0] == np.prod(s) or not strict
    return parsed.view(*s)


def read_label_file(path: str) -> torch.Tensor:
    x = read_sn3_pascalvincent_tensor(path, strict=False)
    if x.dtype != torch.uint8:
        raise TypeError(f"x should be of dtype torch.uint8 instead of {x.dtype}")
    if x.ndimension() != 1:
        raise ValueError(f"x should have 1 dimension instead of {x.ndimension()}")
    return x.long()


def read_image_file(path: str) -> torch.Tensor:
    x = read_sn3_pascalvincent_tensor(path, strict=False)
    if x.dtype != torch.uint8:
        raise TypeError(f"x should be of dtype torch.uint8 instead of {x.dtype}")
    if x.ndimension() != 3:
        raise ValueError(f"x should have 3 dimension instead of {x.ndimension()}")
    return x