File size: 5,637 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import csv
import os
from pathlib import Path
from typing import Any, Callable, List, Optional, Tuple, Union

from PIL import Image

from .utils import download_and_extract_archive
from .vision import VisionDataset


class Kitti(VisionDataset):
    """`KITTI <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark>`_ Dataset.

    It corresponds to the "left color images of object" dataset, for object detection.

    Args:
        root (str or ``pathlib.Path``): Root directory where images are downloaded to.
            Expects the following folder structure if download=False:

            .. code::

                <root>
                    └── Kitti
                        └─ raw
                            β”œβ”€β”€ training
                            |   β”œβ”€β”€ image_2
                            |   └── label_2
                            └── testing
                                └── image_2
        train (bool, optional): Use ``train`` split if true, else ``test`` split.
            Defaults to ``train``.
        transform (callable, optional): A function/transform that takes in a PIL image
            and returns a transformed version. E.g, ``transforms.PILToTensor``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        transforms (callable, optional): A function/transform that takes input sample
            and its target as entry and returns a transformed version.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """

    data_url = "https://s3.eu-central-1.amazonaws.com/avg-kitti/"
    resources = [
        "data_object_image_2.zip",
        "data_object_label_2.zip",
    ]
    image_dir_name = "image_2"
    labels_dir_name = "label_2"

    def __init__(
        self,
        root: Union[str, Path],
        train: bool = True,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        transforms: Optional[Callable] = None,
        download: bool = False,
    ):
        super().__init__(
            root,
            transform=transform,
            target_transform=target_transform,
            transforms=transforms,
        )
        self.images = []
        self.targets = []
        self.train = train
        self._location = "training" if self.train else "testing"

        if download:
            self.download()
        if not self._check_exists():
            raise RuntimeError("Dataset not found. You may use download=True to download it.")

        image_dir = os.path.join(self._raw_folder, self._location, self.image_dir_name)
        if self.train:
            labels_dir = os.path.join(self._raw_folder, self._location, self.labels_dir_name)
        for img_file in os.listdir(image_dir):
            self.images.append(os.path.join(image_dir, img_file))
            if self.train:
                self.targets.append(os.path.join(labels_dir, f"{img_file.split('.')[0]}.txt"))

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """Get item at a given index.

        Args:
            index (int): Index
        Returns:
            tuple: (image, target), where
            target is a list of dictionaries with the following keys:

            - type: str
            - truncated: float
            - occluded: int
            - alpha: float
            - bbox: float[4]
            - dimensions: float[3]
            - locations: float[3]
            - rotation_y: float

        """
        image = Image.open(self.images[index])
        target = self._parse_target(index) if self.train else None
        if self.transforms:
            image, target = self.transforms(image, target)
        return image, target

    def _parse_target(self, index: int) -> List:
        target = []
        with open(self.targets[index]) as inp:
            content = csv.reader(inp, delimiter=" ")
            for line in content:
                target.append(
                    {
                        "type": line[0],
                        "truncated": float(line[1]),
                        "occluded": int(line[2]),
                        "alpha": float(line[3]),
                        "bbox": [float(x) for x in line[4:8]],
                        "dimensions": [float(x) for x in line[8:11]],
                        "location": [float(x) for x in line[11:14]],
                        "rotation_y": float(line[14]),
                    }
                )
        return target

    def __len__(self) -> int:
        return len(self.images)

    @property
    def _raw_folder(self) -> str:
        return os.path.join(self.root, self.__class__.__name__, "raw")

    def _check_exists(self) -> bool:
        """Check if the data directory exists."""
        folders = [self.image_dir_name]
        if self.train:
            folders.append(self.labels_dir_name)
        return all(os.path.isdir(os.path.join(self._raw_folder, self._location, fname)) for fname in folders)

    def download(self) -> None:
        """Download the KITTI data if it doesn't exist already."""

        if self._check_exists():
            return

        os.makedirs(self._raw_folder, exist_ok=True)

        # download files
        for fname in self.resources:
            download_and_extract_archive(
                url=f"{self.data_url}{fname}",
                download_root=self._raw_folder,
                filename=fname,
            )