File size: 8,914 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import shutil
import tempfile
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union

import torch

from .folder import ImageFolder
from .utils import check_integrity, extract_archive, verify_str_arg

ARCHIVE_META = {
    "train": ("ILSVRC2012_img_train.tar", "1d675b47d978889d74fa0da5fadfb00e"),
    "val": ("ILSVRC2012_img_val.tar", "29b22e2961454d5413ddabcf34fc5622"),
    "devkit": ("ILSVRC2012_devkit_t12.tar.gz", "fa75699e90414af021442c21a62c3abf"),
}

META_FILE = "meta.bin"


class ImageNet(ImageFolder):
    """`ImageNet <http://image-net.org/>`_ 2012 Classification Dataset.

    .. note::
        Before using this class, it is required to download ImageNet 2012 dataset from
        `here <https://image-net.org/challenges/LSVRC/2012/2012-downloads.php>`_ and
        place the files ``ILSVRC2012_devkit_t12.tar.gz`` and ``ILSVRC2012_img_train.tar``
        or ``ILSVRC2012_img_val.tar`` based on ``split`` in the root directory.

    Args:
        root (str or ``pathlib.Path``): Root directory of the ImageNet Dataset.
        split (string, optional): The dataset split, supports ``train``, or ``val``.
        transform (callable, optional): A function/transform that takes in a PIL image or torch.Tensor, depends on the given loader,
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.
            By default, it uses PIL as its image loader, but users could also pass in
            ``torchvision.io.decode_image`` for decoding image data into tensors directly.

     Attributes:
        classes (list): List of the class name tuples.
        class_to_idx (dict): Dict with items (class_name, class_index).
        wnids (list): List of the WordNet IDs.
        wnid_to_idx (dict): Dict with items (wordnet_id, class_index).
        imgs (list): List of (image path, class_index) tuples
        targets (list): The class_index value for each image in the dataset
    """

    def __init__(self, root: Union[str, Path], split: str = "train", **kwargs: Any) -> None:
        root = self.root = os.path.expanduser(root)
        self.split = verify_str_arg(split, "split", ("train", "val"))

        self.parse_archives()
        wnid_to_classes = load_meta_file(self.root)[0]

        super().__init__(self.split_folder, **kwargs)
        self.root = root

        self.wnids = self.classes
        self.wnid_to_idx = self.class_to_idx
        self.classes = [wnid_to_classes[wnid] for wnid in self.wnids]
        self.class_to_idx = {cls: idx for idx, clss in enumerate(self.classes) for cls in clss}

    def parse_archives(self) -> None:
        if not check_integrity(os.path.join(self.root, META_FILE)):
            parse_devkit_archive(self.root)

        if not os.path.isdir(self.split_folder):
            if self.split == "train":
                parse_train_archive(self.root)
            elif self.split == "val":
                parse_val_archive(self.root)

    @property
    def split_folder(self) -> str:
        return os.path.join(self.root, self.split)

    def extra_repr(self) -> str:
        return "Split: {split}".format(**self.__dict__)


def load_meta_file(root: Union[str, Path], file: Optional[str] = None) -> Tuple[Dict[str, str], List[str]]:
    if file is None:
        file = META_FILE
    file = os.path.join(root, file)

    if check_integrity(file):
        return torch.load(file, weights_only=True)
    else:
        msg = (
            "The meta file {} is not present in the root directory or is corrupted. "
            "This file is automatically created by the ImageNet dataset."
        )
        raise RuntimeError(msg.format(file, root))


def _verify_archive(root: Union[str, Path], file: str, md5: str) -> None:
    if not check_integrity(os.path.join(root, file), md5):
        msg = (
            "The archive {} is not present in the root directory or is corrupted. "
            "You need to download it externally and place it in {}."
        )
        raise RuntimeError(msg.format(file, root))


def parse_devkit_archive(root: Union[str, Path], file: Optional[str] = None) -> None:
    """Parse the devkit archive of the ImageNet2012 classification dataset and save
    the meta information in a binary file.

    Args:
        root (str or ``pathlib.Path``): Root directory containing the devkit archive
        file (str, optional): Name of devkit archive. Defaults to
            'ILSVRC2012_devkit_t12.tar.gz'
    """
    import scipy.io as sio

    def parse_meta_mat(devkit_root: str) -> Tuple[Dict[int, str], Dict[str, Tuple[str, ...]]]:
        metafile = os.path.join(devkit_root, "data", "meta.mat")
        meta = sio.loadmat(metafile, squeeze_me=True)["synsets"]
        nums_children = list(zip(*meta))[4]
        meta = [meta[idx] for idx, num_children in enumerate(nums_children) if num_children == 0]
        idcs, wnids, classes = list(zip(*meta))[:3]
        classes = [tuple(clss.split(", ")) for clss in classes]
        idx_to_wnid = {idx: wnid for idx, wnid in zip(idcs, wnids)}
        wnid_to_classes = {wnid: clss for wnid, clss in zip(wnids, classes)}
        return idx_to_wnid, wnid_to_classes

    def parse_val_groundtruth_txt(devkit_root: str) -> List[int]:
        file = os.path.join(devkit_root, "data", "ILSVRC2012_validation_ground_truth.txt")
        with open(file) as txtfh:
            val_idcs = txtfh.readlines()
        return [int(val_idx) for val_idx in val_idcs]

    @contextmanager
    def get_tmp_dir() -> Iterator[str]:
        tmp_dir = tempfile.mkdtemp()
        try:
            yield tmp_dir
        finally:
            shutil.rmtree(tmp_dir)

    archive_meta = ARCHIVE_META["devkit"]
    if file is None:
        file = archive_meta[0]
    md5 = archive_meta[1]

    _verify_archive(root, file, md5)

    with get_tmp_dir() as tmp_dir:
        extract_archive(os.path.join(root, file), tmp_dir)

        devkit_root = os.path.join(tmp_dir, "ILSVRC2012_devkit_t12")
        idx_to_wnid, wnid_to_classes = parse_meta_mat(devkit_root)
        val_idcs = parse_val_groundtruth_txt(devkit_root)
        val_wnids = [idx_to_wnid[idx] for idx in val_idcs]

        torch.save((wnid_to_classes, val_wnids), os.path.join(root, META_FILE))


def parse_train_archive(root: Union[str, Path], file: Optional[str] = None, folder: str = "train") -> None:
    """Parse the train images archive of the ImageNet2012 classification dataset and
    prepare it for usage with the ImageNet dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory containing the train images archive
        file (str, optional): Name of train images archive. Defaults to
            'ILSVRC2012_img_train.tar'
        folder (str, optional): Optional name for train images folder. Defaults to
            'train'
    """
    archive_meta = ARCHIVE_META["train"]
    if file is None:
        file = archive_meta[0]
    md5 = archive_meta[1]

    _verify_archive(root, file, md5)

    train_root = os.path.join(root, folder)
    extract_archive(os.path.join(root, file), train_root)

    archives = [os.path.join(train_root, archive) for archive in os.listdir(train_root)]
    for archive in archives:
        extract_archive(archive, os.path.splitext(archive)[0], remove_finished=True)


def parse_val_archive(
    root: Union[str, Path], file: Optional[str] = None, wnids: Optional[List[str]] = None, folder: str = "val"
) -> None:
    """Parse the validation images archive of the ImageNet2012 classification dataset
    and prepare it for usage with the ImageNet dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory containing the validation images archive
        file (str, optional): Name of validation images archive. Defaults to
            'ILSVRC2012_img_val.tar'
        wnids (list, optional): List of WordNet IDs of the validation images. If None
            is given, the IDs are loaded from the meta file in the root directory
        folder (str, optional): Optional name for validation images folder. Defaults to
            'val'
    """
    archive_meta = ARCHIVE_META["val"]
    if file is None:
        file = archive_meta[0]
    md5 = archive_meta[1]
    if wnids is None:
        wnids = load_meta_file(root)[1]

    _verify_archive(root, file, md5)

    val_root = os.path.join(root, folder)
    extract_archive(os.path.join(root, file), val_root)

    images = sorted(os.path.join(val_root, image) for image in os.listdir(val_root))

    for wnid in set(wnids):
        os.mkdir(os.path.join(val_root, wnid))

    for wnid, img_file in zip(wnids, images):
        shutil.move(img_file, os.path.join(val_root, wnid, os.path.basename(img_file)))