File size: 10,349 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import json
import os
from collections import namedtuple
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from PIL import Image
from .utils import extract_archive, iterable_to_str, verify_str_arg
from .vision import VisionDataset
class Cityscapes(VisionDataset):
"""`Cityscapes <http://www.cityscapes-dataset.com/>`_ Dataset.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where directory ``leftImg8bit``
and ``gtFine`` or ``gtCoarse`` are located.
split (string, optional): The image split to use, ``train``, ``test`` or ``val`` if mode="fine"
otherwise ``train``, ``train_extra`` or ``val``
mode (string, optional): The quality mode to use, ``fine`` or ``coarse``
target_type (string or list, optional): Type of target to use, ``instance``, ``semantic``, ``polygon``
or ``color``. Can also be a list to output a tuple with all specified target types.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample and its target as entry
and returns a transformed version.
Examples:
Get semantic segmentation target
.. code-block:: python
dataset = Cityscapes('./data/cityscapes', split='train', mode='fine',
target_type='semantic')
img, smnt = dataset[0]
Get multiple targets
.. code-block:: python
dataset = Cityscapes('./data/cityscapes', split='train', mode='fine',
target_type=['instance', 'color', 'polygon'])
img, (inst, col, poly) = dataset[0]
Validate on the "coarse" set
.. code-block:: python
dataset = Cityscapes('./data/cityscapes', split='val', mode='coarse',
target_type='semantic')
img, smnt = dataset[0]
"""
# Based on https://github.com/mcordts/cityscapesScripts
CityscapesClass = namedtuple(
"CityscapesClass",
["name", "id", "train_id", "category", "category_id", "has_instances", "ignore_in_eval", "color"],
)
classes = [
CityscapesClass("unlabeled", 0, 255, "void", 0, False, True, (0, 0, 0)),
CityscapesClass("ego vehicle", 1, 255, "void", 0, False, True, (0, 0, 0)),
CityscapesClass("rectification border", 2, 255, "void", 0, False, True, (0, 0, 0)),
CityscapesClass("out of roi", 3, 255, "void", 0, False, True, (0, 0, 0)),
CityscapesClass("static", 4, 255, "void", 0, False, True, (0, 0, 0)),
CityscapesClass("dynamic", 5, 255, "void", 0, False, True, (111, 74, 0)),
CityscapesClass("ground", 6, 255, "void", 0, False, True, (81, 0, 81)),
CityscapesClass("road", 7, 0, "flat", 1, False, False, (128, 64, 128)),
CityscapesClass("sidewalk", 8, 1, "flat", 1, False, False, (244, 35, 232)),
CityscapesClass("parking", 9, 255, "flat", 1, False, True, (250, 170, 160)),
CityscapesClass("rail track", 10, 255, "flat", 1, False, True, (230, 150, 140)),
CityscapesClass("building", 11, 2, "construction", 2, False, False, (70, 70, 70)),
CityscapesClass("wall", 12, 3, "construction", 2, False, False, (102, 102, 156)),
CityscapesClass("fence", 13, 4, "construction", 2, False, False, (190, 153, 153)),
CityscapesClass("guard rail", 14, 255, "construction", 2, False, True, (180, 165, 180)),
CityscapesClass("bridge", 15, 255, "construction", 2, False, True, (150, 100, 100)),
CityscapesClass("tunnel", 16, 255, "construction", 2, False, True, (150, 120, 90)),
CityscapesClass("pole", 17, 5, "object", 3, False, False, (153, 153, 153)),
CityscapesClass("polegroup", 18, 255, "object", 3, False, True, (153, 153, 153)),
CityscapesClass("traffic light", 19, 6, "object", 3, False, False, (250, 170, 30)),
CityscapesClass("traffic sign", 20, 7, "object", 3, False, False, (220, 220, 0)),
CityscapesClass("vegetation", 21, 8, "nature", 4, False, False, (107, 142, 35)),
CityscapesClass("terrain", 22, 9, "nature", 4, False, False, (152, 251, 152)),
CityscapesClass("sky", 23, 10, "sky", 5, False, False, (70, 130, 180)),
CityscapesClass("person", 24, 11, "human", 6, True, False, (220, 20, 60)),
CityscapesClass("rider", 25, 12, "human", 6, True, False, (255, 0, 0)),
CityscapesClass("car", 26, 13, "vehicle", 7, True, False, (0, 0, 142)),
CityscapesClass("truck", 27, 14, "vehicle", 7, True, False, (0, 0, 70)),
CityscapesClass("bus", 28, 15, "vehicle", 7, True, False, (0, 60, 100)),
CityscapesClass("caravan", 29, 255, "vehicle", 7, True, True, (0, 0, 90)),
CityscapesClass("trailer", 30, 255, "vehicle", 7, True, True, (0, 0, 110)),
CityscapesClass("train", 31, 16, "vehicle", 7, True, False, (0, 80, 100)),
CityscapesClass("motorcycle", 32, 17, "vehicle", 7, True, False, (0, 0, 230)),
CityscapesClass("bicycle", 33, 18, "vehicle", 7, True, False, (119, 11, 32)),
CityscapesClass("license plate", -1, -1, "vehicle", 7, False, True, (0, 0, 142)),
]
def __init__(
self,
root: Union[str, Path],
split: str = "train",
mode: str = "fine",
target_type: Union[List[str], str] = "instance",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
) -> None:
super().__init__(root, transforms, transform, target_transform)
self.mode = "gtFine" if mode == "fine" else "gtCoarse"
self.images_dir = os.path.join(self.root, "leftImg8bit", split)
self.targets_dir = os.path.join(self.root, self.mode, split)
self.target_type = target_type
self.split = split
self.images = []
self.targets = []
verify_str_arg(mode, "mode", ("fine", "coarse"))
if mode == "fine":
valid_modes = ("train", "test", "val")
else:
valid_modes = ("train", "train_extra", "val")
msg = "Unknown value '{}' for argument split if mode is '{}'. Valid values are {{{}}}."
msg = msg.format(split, mode, iterable_to_str(valid_modes))
verify_str_arg(split, "split", valid_modes, msg)
if not isinstance(target_type, list):
self.target_type = [target_type]
[
verify_str_arg(value, "target_type", ("instance", "semantic", "polygon", "color"))
for value in self.target_type
]
if not os.path.isdir(self.images_dir) or not os.path.isdir(self.targets_dir):
if split == "train_extra":
image_dir_zip = os.path.join(self.root, "leftImg8bit_trainextra.zip")
else:
image_dir_zip = os.path.join(self.root, "leftImg8bit_trainvaltest.zip")
if self.mode == "gtFine":
target_dir_zip = os.path.join(self.root, f"{self.mode}_trainvaltest.zip")
elif self.mode == "gtCoarse":
target_dir_zip = os.path.join(self.root, f"{self.mode}.zip")
if os.path.isfile(image_dir_zip) and os.path.isfile(target_dir_zip):
extract_archive(from_path=image_dir_zip, to_path=self.root)
extract_archive(from_path=target_dir_zip, to_path=self.root)
else:
raise RuntimeError(
"Dataset not found or incomplete. Please make sure all required folders for the"
' specified "split" and "mode" are inside the "root" directory'
)
for city in os.listdir(self.images_dir):
img_dir = os.path.join(self.images_dir, city)
target_dir = os.path.join(self.targets_dir, city)
for file_name in os.listdir(img_dir):
target_types = []
for t in self.target_type:
target_name = "{}_{}".format(
file_name.split("_leftImg8bit")[0], self._get_target_suffix(self.mode, t)
)
target_types.append(os.path.join(target_dir, target_name))
self.images.append(os.path.join(img_dir, file_name))
self.targets.append(target_types)
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is a tuple of all target types if target_type is a list with more
than one item. Otherwise, target is a json object if target_type="polygon", else the image segmentation.
"""
image = Image.open(self.images[index]).convert("RGB")
targets: Any = []
for i, t in enumerate(self.target_type):
if t == "polygon":
target = self._load_json(self.targets[index][i])
else:
target = Image.open(self.targets[index][i]) # type: ignore[assignment]
targets.append(target)
target = tuple(targets) if len(targets) > 1 else targets[0] # type: ignore[assignment]
if self.transforms is not None:
image, target = self.transforms(image, target)
return image, target
def __len__(self) -> int:
return len(self.images)
def extra_repr(self) -> str:
lines = ["Split: {split}", "Mode: {mode}", "Type: {target_type}"]
return "\n".join(lines).format(**self.__dict__)
def _load_json(self, path: str) -> Dict[str, Any]:
with open(path) as file:
data = json.load(file)
return data
def _get_target_suffix(self, mode: str, target_type: str) -> str:
if target_type == "instance":
return f"{mode}_instanceIds.png"
elif target_type == "semantic":
return f"{mode}_labelIds.png"
elif target_type == "color":
return f"{mode}_color.png"
else:
return f"{mode}_polygons.json"
|