File size: 6,933 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Optional, Union

import torch

from torchmetrics.collections import MetricCollection
from torchmetrics.metric import Metric
from torchmetrics.wrappers.abstract import WrapperMetric


class MetricInputTransformer(WrapperMetric):
    """Abstract base class for metric input transformations.

    Input transformations are characterized by them applying a transformation to the input data of a metric, and then
    forwarding all calls to the wrapped metric with modifications applied.

    """

    def __init__(self, wrapped_metric: Union[Metric, MetricCollection], **kwargs: dict[str, Any]) -> None:
        super().__init__(**kwargs)
        if not isinstance(wrapped_metric, (Metric, MetricCollection)):
            raise TypeError(
                f"Expected wrapped metric to be an instance of `torchmetrics.Metric` or "
                f"`torchmetrics.MetricsCollection`but received {wrapped_metric}"
            )
        self.wrapped_metric = wrapped_metric

    def transform_pred(self, pred: torch.Tensor) -> torch.Tensor:
        """Define transform operations on the prediction data.

        Overridden by subclasses. Identity by default.

        """
        return pred

    def transform_target(self, target: torch.Tensor) -> torch.Tensor:
        """Define transform operations on the target data.

        Overridden by subclasses. Identity by default.

        """
        return target

    def _wrap_transform(self, *args: torch.Tensor) -> tuple[torch.Tensor, ...]:
        """Wrap transformation functions to dispatch args to their individual transform functions."""
        if len(args) == 1:
            return (self.transform_pred(args[0]),)
        if len(args) == 2:
            return self.transform_pred(args[0]), self.transform_target(args[1])
        return self.transform_pred(args[0]), self.transform_target(args[1]), *args[2:]

    def update(self, *args: torch.Tensor, **kwargs: dict[str, Any]) -> None:
        """Wrap the update call of the underlying metric."""
        args = self._wrap_transform(*args)
        self.wrapped_metric.update(*args, **kwargs)

    def compute(self) -> Any:
        """Wrap the compute call of the underlying metric."""
        return self.wrapped_metric.compute()

    def forward(self, *args: torch.Tensor, **kwargs: dict[str, Any]) -> Any:
        """Wrap the forward call of the underlying metric."""
        args = self._wrap_transform(*args)
        return self.wrapped_metric.forward(*args, **kwargs)


class LambdaInputTransformer(MetricInputTransformer):
    """Wrapper class for transforming a metrics' inputs given a user-defined lambda function.

    Args:
        wrapped_metric:
            The underlying `Metric` or `MetricCollection`.
        transform_pred:
            The function to apply to the predictions before computing the metric.
        transform_target:
            The function to apply to the target before computing the metric.

    Raises:
        TypeError:
            If `transform_pred` is not a Callable.
        TypeError:
            If `transform_target` is not a Callable.

    Example:
        >>> import torch
        >>> from torchmetrics.classification import BinaryAccuracy
        >>> from torchmetrics.wrappers import LambdaInputTransformer
        >>>
        >>> preds = torch.tensor([0.9, 0.8, 0.7, 0.6, 0.5, 0.6, 0.7, 0.8, 0.5, 0.4])
        >>> targets = torch.tensor([1,0,0,0,0,1,1,0,0,0])
        >>>
        >>> metric = LambdaInputTransformer(BinaryAccuracy(), lambda preds: 1 - preds)
        >>> metric.update(preds, targets)
        >>> metric.compute()
        tensor(0.6000)

    """

    def __init__(
        self,
        wrapped_metric: Metric,
        transform_pred: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
        transform_target: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__(wrapped_metric, **kwargs)
        if transform_pred is not None:
            if not callable(transform_pred):
                raise TypeError(f"Expected `transform_pred` to be of type `Callable` but received `{transform_pred}`")
            self.transform_pred = transform_pred  # type: ignore[assignment,method-assign]

        if transform_target is not None:
            if not callable(transform_target):
                raise TypeError(
                    f"Expected `transform_target` to be of type `Callable` but received `{transform_target}`"
                )
            self.transform_target = transform_target  # type: ignore[assignment,method-assign]


class BinaryTargetTransformer(MetricInputTransformer):
    """Wrapper class for computing a metric on binarized targets.

    Useful when the given ground-truth targets are continuous, but the metric requires binary targets.

    Args:
        wrapped_metric:
            The underlying `Metric` or `MetricCollection`.
        threshold:
            The binarization threshold for the targets. Targets values `t` are cast to binary with `t > threshold`.

    Raises:
        TypeError:
            If `threshold` is not an `int` or `float`.

    Example:
        >>> import torch
        >>> from torchmetrics.retrieval import RetrievalMRR
        >>> from torchmetrics.wrappers import BinaryTargetTransformer
        >>>
        >>> preds = torch.tensor([0.9, 0.8, 0.7, 0.6, 0.5, 0.6, 0.7, 0.8, 0.5, 0.4])
        >>> targets = torch.tensor([1,0,0,0,0,2,1,0,0,0])
        >>> topics = torch.tensor([0,0,0,0,0,1,1,1,1,1])
        >>>
        >>> metric = BinaryTargetTransformer(RetrievalMRR())
        >>> metric.update(preds, targets, indexes=topics)
        >>> metric.compute()
        tensor(0.7500)

    """

    def __init__(self, wrapped_metric: Union[Metric, MetricCollection], threshold: float = 0, **kwargs: Any) -> None:
        super().__init__(wrapped_metric, **kwargs)
        if not isinstance(threshold, (int, float)):
            raise TypeError(f"Expected `threshold` to be of type `int` or `float` but received `{threshold}`")
        self.threshold = threshold

    def transform_target(self, target: torch.Tensor) -> torch.Tensor:
        """Cast the target tensor to binary values according to the threshold.

        Output assumes same type as input.

        """
        return target.gt(self.threshold).to(target.dtype)