File size: 6,262 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
from torchmetrics.wrappers.abstract import WrapperMetric
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["MinMaxMetric.plot"]
class MinMaxMetric(WrapperMetric):
"""Wrapper metric that tracks both the minimum and maximum of a scalar/tensor across an experiment.
The min/max value will be updated each time ``.compute`` is called.
Args:
base_metric:
The metric of which you want to keep track of its maximum and minimum values.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError
If ``base_metric` argument is not a subclasses instance of ``torchmetrics.Metric``
Example::
>>> import torch
>>> from torchmetrics.wrappers import MinMaxMetric
>>> from torchmetrics.classification import BinaryAccuracy
>>> from pprint import pprint
>>> base_metric = BinaryAccuracy()
>>> minmax_metric = MinMaxMetric(base_metric)
>>> preds_1 = torch.Tensor([[0.1, 0.9], [0.2, 0.8]])
>>> preds_2 = torch.Tensor([[0.9, 0.1], [0.2, 0.8]])
>>> labels = torch.Tensor([[0, 1], [0, 1]]).long()
>>> pprint(minmax_metric(preds_1, labels))
{'max': tensor(1.), 'min': tensor(1.), 'raw': tensor(1.)}
>>> pprint(minmax_metric.compute())
{'max': tensor(1.), 'min': tensor(1.), 'raw': tensor(1.)}
>>> minmax_metric.update(preds_2, labels)
>>> pprint(minmax_metric.compute())
{'max': tensor(1.), 'min': tensor(0.7500), 'raw': tensor(0.7500)}
"""
full_state_update: Optional[bool] = True
min_val: Tensor
max_val: Tensor
def __init__(
self,
base_metric: Metric,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if not isinstance(base_metric, Metric):
raise ValueError(
f"Expected base metric to be an instance of `torchmetrics.Metric` but received {base_metric}"
)
self._base_metric = base_metric
self.min_val = torch.tensor(float("inf"))
self.max_val = torch.tensor(float("-inf"))
def update(self, *args: Any, **kwargs: Any) -> None:
"""Update the underlying metric."""
self._base_metric.update(*args, **kwargs)
def compute(self) -> dict[str, Tensor]:
"""Compute the underlying metric as well as max and min values for this metric.
Returns a dictionary that consists of the computed value (``raw``), as well as the minimum (``min``) and maximum
(``max``) values.
"""
val = self._base_metric.compute()
if not self._is_suitable_val(val):
raise RuntimeError(f"Returned value from base metric should be a float or scalar tensor, but got {val}.")
self.max_val = val if self.max_val.to(val.device) < val else self.max_val.to(val.device)
self.min_val = val if self.min_val.to(val.device) > val else self.min_val.to(val.device)
return {"raw": val, "max": self.max_val, "min": self.min_val}
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Use the original forward method of the base metric class."""
return super(WrapperMetric, self).forward(*args, **kwargs)
def reset(self) -> None:
"""Set ``max_val`` and ``min_val`` to the initialization bounds and resets the base metric."""
super().reset()
self._base_metric.reset()
@staticmethod
def _is_suitable_val(val: Union[float, Tensor]) -> bool:
"""Check whether min/max is a scalar value."""
if isinstance(val, (int, float)):
return True
if isinstance(val, Tensor):
return val.numel() == 1
return False
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.wrappers import MinMaxMetric
>>> from torchmetrics.classification import BinaryAccuracy
>>> metric = MinMaxMetric(BinaryAccuracy())
>>> metric.update(torch.randint(2, (20,)), torch.randint(2, (20,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.wrappers import MinMaxMetric
>>> from torchmetrics.classification import BinaryAccuracy
>>> metric = MinMaxMetric(BinaryAccuracy())
>>> values = [ ]
>>> for _ in range(3):
... values.append(metric(torch.randint(2, (20,)), torch.randint(2, (20,))))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|