File size: 9,023 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from copy import deepcopy
from typing import Any, Optional, Union
import torch
from lightning_utilities import apply_to_collection
from torch import Tensor
from torch.nn import ModuleList
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
from torchmetrics.wrappers.abstract import WrapperMetric
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["BootStrapper.plot"]
def _bootstrap_sampler(
size: int,
sampling_strategy: str = "poisson",
) -> torch.Tensor:
"""Resample a tensor along its first dimension with replacement.
Args:
size: number of samples
sampling_strategy: the strategy to use for sampling, either ``'poisson'`` or ``'multinomial'``
Returns:
resampled tensor
"""
if sampling_strategy == "poisson":
p = torch.distributions.Poisson(1)
n = p.sample((size,))
return torch.arange(size).repeat_interleave(n.long(), dim=0)
if sampling_strategy == "multinomial":
return torch.multinomial(torch.ones(size), num_samples=size, replacement=True)
raise ValueError("Unknown sampling strategy")
class BootStrapper(WrapperMetric):
r"""Using `Turn a Metric into a Bootstrapped`_.
That can automate the process of getting confidence intervals for metric values. This wrapper
class basically keeps multiple copies of the same base metric in memory and whenever ``update`` or
``forward`` is called, all input tensors are resampled (with replacement) along the first dimension.
Args:
base_metric: base metric class to wrap
num_bootstraps: number of copies to make of the base metric for bootstrapping
mean: if ``True`` return the mean of the bootstraps
std: if ``True`` return the standard deviation of the bootstraps
quantile: if given, returns the quantile of the bootstraps. Can only be used with pytorch version 1.6 or higher
raw: if ``True``, return all bootstrapped values
sampling_strategy:
Determines how to produce bootstrapped samplings. Either ``'poisson'`` or ``multinomial``.
If ``'possion'`` is chosen, the number of times each sample will be included in the bootstrap
will be given by :math:`n\sim Poisson(\lambda=1)`, which approximates the true bootstrap distribution
when the number of samples is large. If ``'multinomial'`` is chosen, we will apply true bootstrapping
at the batch level to approximate bootstrapping over the hole dataset.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example::
>>> from pprint import pprint
>>> from torch import randint
>>> from torchmetrics.wrappers import BootStrapper
>>> from torchmetrics.classification import MulticlassAccuracy
>>> base_metric = MulticlassAccuracy(num_classes=5, average='micro')
>>> bootstrap = BootStrapper(base_metric, num_bootstraps=20)
>>> bootstrap.update(randint(5, (20,)), randint(5, (20,)))
>>> output = bootstrap.compute()
>>> pprint(output)
{'mean': tensor(0.2089), 'std': tensor(0.0772)}
"""
full_state_update: Optional[bool] = True
def __init__(
self,
base_metric: Metric,
num_bootstraps: int = 10,
mean: bool = True,
std: bool = True,
quantile: Optional[Union[float, Tensor]] = None,
raw: bool = False,
sampling_strategy: str = "poisson",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if not isinstance(base_metric, Metric):
raise ValueError(
f"Expected base metric to be an instance of torchmetrics.Metric but received {base_metric}"
)
self.metrics = ModuleList([deepcopy(base_metric) for _ in range(num_bootstraps)])
self.num_bootstraps = num_bootstraps
self.mean = mean
self.std = std
self.quantile = quantile
self.raw = raw
allowed_sampling = ("poisson", "multinomial")
if sampling_strategy not in allowed_sampling:
raise ValueError(
f"Expected argument ``sampling_strategy`` to be one of {allowed_sampling}"
f" but received {sampling_strategy}"
)
self.sampling_strategy = sampling_strategy
def update(self, *args: Any, **kwargs: Any) -> None:
"""Update the state of the base metric.
Any tensor passed in will be bootstrapped along dimension 0.
"""
args_sizes = apply_to_collection(args, torch.Tensor, len)
kwargs_sizes = apply_to_collection(kwargs, torch.Tensor, len)
if len(args_sizes) > 0:
size = args_sizes[0]
elif len(kwargs_sizes) > 0:
size = next(iter(kwargs_sizes.values()))
else:
raise ValueError("None of the input contained tensors, so could not determine the sampling size")
for idx in range(self.num_bootstraps):
sample_idx = _bootstrap_sampler(size, sampling_strategy=self.sampling_strategy).to(self.device)
if sample_idx.numel() == 0:
continue
new_args = apply_to_collection(args, torch.Tensor, torch.index_select, dim=0, index=sample_idx)
new_kwargs = apply_to_collection(kwargs, torch.Tensor, torch.index_select, dim=0, index=sample_idx)
self.metrics[idx].update(*new_args, **new_kwargs) # type: ignore[operator] # needed for mypy
def compute(self) -> dict[str, Tensor]:
"""Compute the bootstrapped metric values.
Always returns a dict of tensors, which can contain the following keys: ``mean``, ``std``, ``quantile`` and
``raw`` depending on how the class was initialized.
"""
computed_vals = torch.stack([m.compute() for m in self.metrics], dim=0)
output_dict = {}
if self.mean:
output_dict["mean"] = computed_vals.mean(dim=0)
if self.std:
output_dict["std"] = computed_vals.std(dim=0)
if self.quantile is not None:
output_dict["quantile"] = torch.quantile(computed_vals, self.quantile)
if self.raw:
output_dict["raw"] = computed_vals
return output_dict
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Use the original forward method of the base metric class."""
return super(WrapperMetric, self).forward(*args, **kwargs)
def reset(self) -> None:
"""Reset the state of the base metric."""
for m in self.metrics:
m.reset()
super().reset()
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.wrappers import BootStrapper
>>> from torchmetrics.regression import MeanSquaredError
>>> metric = BootStrapper(MeanSquaredError(), num_bootstraps=20)
>>> metric.update(torch.randn(100,), torch.randn(100,))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.wrappers import BootStrapper
>>> from torchmetrics.regression import MeanSquaredError
>>> metric = BootStrapper(MeanSquaredError(), num_bootstraps=20)
>>> values = [ ]
>>> for _ in range(3):
... values.append(metric(torch.randn(100,), torch.randn(100,)))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|