File size: 9,023 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from copy import deepcopy
from typing import Any, Optional, Union

import torch
from lightning_utilities import apply_to_collection
from torch import Tensor
from torch.nn import ModuleList

from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
from torchmetrics.wrappers.abstract import WrapperMetric

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["BootStrapper.plot"]


def _bootstrap_sampler(
    size: int,
    sampling_strategy: str = "poisson",
) -> torch.Tensor:
    """Resample a tensor along its first dimension with replacement.

    Args:
        size: number of samples
        sampling_strategy: the strategy to use for sampling, either ``'poisson'`` or ``'multinomial'``

    Returns:
        resampled tensor

    """
    if sampling_strategy == "poisson":
        p = torch.distributions.Poisson(1)
        n = p.sample((size,))
        return torch.arange(size).repeat_interleave(n.long(), dim=0)
    if sampling_strategy == "multinomial":
        return torch.multinomial(torch.ones(size), num_samples=size, replacement=True)
    raise ValueError("Unknown sampling strategy")


class BootStrapper(WrapperMetric):
    r"""Using `Turn a Metric into a Bootstrapped`_.

    That can automate the process of getting confidence intervals for metric values. This wrapper
    class basically keeps multiple copies of the same base metric in memory and whenever ``update`` or
    ``forward`` is called, all input tensors are resampled (with replacement) along the first dimension.

    Args:
        base_metric: base metric class to wrap
        num_bootstraps: number of copies to make of the base metric for bootstrapping
        mean: if ``True`` return the mean of the bootstraps
        std: if ``True`` return the standard deviation of the bootstraps
        quantile: if given, returns the quantile of the bootstraps. Can only be used with pytorch version 1.6 or higher
        raw: if ``True``, return all bootstrapped values
        sampling_strategy:
            Determines how to produce bootstrapped samplings. Either ``'poisson'`` or ``multinomial``.
            If ``'possion'`` is chosen, the number of times each sample will be included in the bootstrap
            will be given by :math:`n\sim Poisson(\lambda=1)`, which approximates the true bootstrap distribution
            when the number of samples is large. If ``'multinomial'`` is chosen, we will apply true bootstrapping
            at the batch level to approximate bootstrapping over the hole dataset.
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example::
        >>> from pprint import pprint
        >>> from torch import randint
        >>> from torchmetrics.wrappers import BootStrapper
        >>> from torchmetrics.classification import MulticlassAccuracy
        >>> base_metric = MulticlassAccuracy(num_classes=5, average='micro')
        >>> bootstrap = BootStrapper(base_metric, num_bootstraps=20)
        >>> bootstrap.update(randint(5, (20,)), randint(5, (20,)))
        >>> output = bootstrap.compute()
        >>> pprint(output)
        {'mean': tensor(0.2089), 'std': tensor(0.0772)}

    """

    full_state_update: Optional[bool] = True

    def __init__(
        self,
        base_metric: Metric,
        num_bootstraps: int = 10,
        mean: bool = True,
        std: bool = True,
        quantile: Optional[Union[float, Tensor]] = None,
        raw: bool = False,
        sampling_strategy: str = "poisson",
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        if not isinstance(base_metric, Metric):
            raise ValueError(
                f"Expected base metric to be an instance of torchmetrics.Metric but received {base_metric}"
            )

        self.metrics = ModuleList([deepcopy(base_metric) for _ in range(num_bootstraps)])
        self.num_bootstraps = num_bootstraps

        self.mean = mean
        self.std = std
        self.quantile = quantile
        self.raw = raw

        allowed_sampling = ("poisson", "multinomial")
        if sampling_strategy not in allowed_sampling:
            raise ValueError(
                f"Expected argument ``sampling_strategy`` to be one of {allowed_sampling}"
                f" but received {sampling_strategy}"
            )
        self.sampling_strategy = sampling_strategy

    def update(self, *args: Any, **kwargs: Any) -> None:
        """Update the state of the base metric.

        Any tensor passed in will be bootstrapped along dimension 0.

        """
        args_sizes = apply_to_collection(args, torch.Tensor, len)
        kwargs_sizes = apply_to_collection(kwargs, torch.Tensor, len)
        if len(args_sizes) > 0:
            size = args_sizes[0]
        elif len(kwargs_sizes) > 0:
            size = next(iter(kwargs_sizes.values()))
        else:
            raise ValueError("None of the input contained tensors, so could not determine the sampling size")

        for idx in range(self.num_bootstraps):
            sample_idx = _bootstrap_sampler(size, sampling_strategy=self.sampling_strategy).to(self.device)
            if sample_idx.numel() == 0:
                continue
            new_args = apply_to_collection(args, torch.Tensor, torch.index_select, dim=0, index=sample_idx)
            new_kwargs = apply_to_collection(kwargs, torch.Tensor, torch.index_select, dim=0, index=sample_idx)
            self.metrics[idx].update(*new_args, **new_kwargs)  # type: ignore[operator]  # needed for mypy

    def compute(self) -> dict[str, Tensor]:
        """Compute the bootstrapped metric values.

        Always returns a dict of tensors, which can contain the following keys: ``mean``, ``std``, ``quantile`` and
        ``raw`` depending on how the class was initialized.

        """
        computed_vals = torch.stack([m.compute() for m in self.metrics], dim=0)
        output_dict = {}
        if self.mean:
            output_dict["mean"] = computed_vals.mean(dim=0)
        if self.std:
            output_dict["std"] = computed_vals.std(dim=0)
        if self.quantile is not None:
            output_dict["quantile"] = torch.quantile(computed_vals, self.quantile)
        if self.raw:
            output_dict["raw"] = computed_vals
        return output_dict

    def forward(self, *args: Any, **kwargs: Any) -> Any:
        """Use the original forward method of the base metric class."""
        return super(WrapperMetric, self).forward(*args, **kwargs)

    def reset(self) -> None:
        """Reset the state of the base metric."""
        for m in self.metrics:
            m.reset()
        super().reset()

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.wrappers import BootStrapper
            >>> from torchmetrics.regression import MeanSquaredError
            >>> metric = BootStrapper(MeanSquaredError(), num_bootstraps=20)
            >>> metric.update(torch.randn(100,), torch.randn(100,))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.wrappers import BootStrapper
            >>> from torchmetrics.regression import MeanSquaredError
            >>> metric = BootStrapper(MeanSquaredError(), num_bootstraps=20)
            >>> values = [ ]
            >>> for _ in range(3):
            ...     values.append(metric(torch.randn(100,), torch.randn(100,)))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)