File size: 14,461 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Generator, Sequence
from itertools import product
from math import ceil, floor, sqrt
from typing import Any, List, Optional, Union, no_type_check
import numpy as np
import torch
from torch import Tensor
from torchmetrics.utilities.imports import _LATEX_AVAILABLE, _MATPLOTLIB_AVAILABLE, _SCIENCEPLOT_AVAILABLE
if _MATPLOTLIB_AVAILABLE:
import matplotlib
import matplotlib.axes
import matplotlib.pyplot as plt
_PLOT_OUT_TYPE = tuple[plt.Figure, Union[matplotlib.axes.Axes, np.ndarray]]
_AX_TYPE = matplotlib.axes.Axes
_CMAP_TYPE = Union[matplotlib.colors.Colormap, str]
style_change = plt.style.context
else:
_PLOT_OUT_TYPE = tuple[object, object] # type: ignore[misc]
_AX_TYPE = object
_CMAP_TYPE = object # type: ignore[misc]
from contextlib import contextmanager
@contextmanager
def style_change(*args: Any, **kwargs: Any) -> Generator:
"""No-ops decorator if matplotlib is not installed."""
yield
if _SCIENCEPLOT_AVAILABLE:
import scienceplots # noqa: F401
_style = ["science", "no-latex"]
_style = ["science"] if _SCIENCEPLOT_AVAILABLE and _LATEX_AVAILABLE else ["default"]
def _error_on_missing_matplotlib() -> None:
"""Raise error if matplotlib is not installed."""
if not _MATPLOTLIB_AVAILABLE:
raise ModuleNotFoundError(
"Plot function expects `matplotlib` to be installed. Please install with `pip install matplotlib`"
)
@style_change(_style)
def plot_single_or_multi_val(
val: Union[Tensor, Sequence[Tensor], dict[str, Tensor], Sequence[dict[str, Tensor]]],
ax: Optional[_AX_TYPE] = None, # type: ignore[valid-type]
higher_is_better: Optional[bool] = None,
lower_bound: Optional[float] = None,
upper_bound: Optional[float] = None,
legend_name: Optional[str] = None,
name: Optional[str] = None,
) -> _PLOT_OUT_TYPE:
"""Plot a single metric value or multiple, including bounds of value if existing.
Args:
val: A single tensor with one or multiple values (multiclass/label/output format) or a list of such tensors.
If a list is provided the values are interpreted as a time series of evolving values.
ax: Axis from a figure.
higher_is_better: Indicates if a label indicating where the optimal value it should be added to the figure
lower_bound: lower value that the metric can take
upper_bound: upper value that the metric can take
legend_name: for class based metrics specify the legend prefix e.g. Class or Label to use when multiple values
are provided
name: Name of the metric to use for the y-axis label
Returns:
A tuple consisting of the figure and respective ax objects of the generated figure
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
"""
_error_on_missing_matplotlib()
fig, ax = plt.subplots() if ax is None else (None, ax)
ax.get_xaxis().set_visible(False)
if isinstance(val, Tensor):
if val.numel() == 1:
ax.plot([val.detach().cpu()], marker="o", markersize=10)
else:
for i, v in enumerate(val):
label = f"{legend_name} {i}" if legend_name else f"{i}"
ax.plot(i, v.detach().cpu(), marker="o", markersize=10, linestyle="None", label=label)
elif isinstance(val, dict):
for i, (k, v) in enumerate(val.items()):
if v.numel() != 1:
ax.plot(v.detach().cpu(), marker="o", markersize=10, linestyle="-", label=k)
ax.get_xaxis().set_visible(True)
ax.set_xlabel("Step")
ax.set_xticks(torch.arange(len(v)))
else:
ax.plot(i, v.detach().cpu(), marker="o", markersize=10, label=k)
elif isinstance(val, Sequence):
n_steps = len(val)
if isinstance(val[0], dict):
val = {k: torch.stack([val[i][k] for i in range(n_steps)]) for k in val[0]} # type: ignore
for k, v in val.items():
ax.plot(v.detach().cpu(), marker="o", markersize=10, linestyle="-", label=k)
else:
val = torch.stack(val, 0) # type: ignore
multi_series = val.ndim != 1
val = val.T if multi_series else val.unsqueeze(0)
for i, v in enumerate(val):
label = (f"{legend_name} {i}" if legend_name else f"{i}") if multi_series else ""
ax.plot(v.detach().cpu(), marker="o", markersize=10, linestyle="-", label=label)
ax.get_xaxis().set_visible(True)
ax.set_xlabel("Step")
ax.set_xticks(torch.arange(n_steps))
else:
raise ValueError("Got unknown format for argument `val`.")
handles, labels = ax.get_legend_handles_labels()
if handles and labels:
ax.legend(handles, labels, loc="upper center", bbox_to_anchor=(0.5, 1.15), ncol=3, fancybox=True, shadow=True)
ylim = ax.get_ylim()
if lower_bound is not None and upper_bound is not None:
factor = 0.1 * (upper_bound - lower_bound)
else:
factor = 0.1 * (ylim[1] - ylim[0])
ax.set_ylim(
bottom=lower_bound - factor if lower_bound is not None else ylim[0] - factor,
top=upper_bound + factor if upper_bound is not None else ylim[1] + factor,
)
ax.grid(True)
ax.set_ylabel(name if name is not None else None)
xlim = ax.get_xlim()
factor = 0.1 * (xlim[1] - xlim[0])
y_lines = []
if lower_bound is not None:
y_lines.append(lower_bound)
if upper_bound is not None:
y_lines.append(upper_bound)
ax.hlines(y_lines, xlim[0], xlim[1], linestyles="dashed", colors="k")
if higher_is_better is not None:
if lower_bound is not None and not higher_is_better:
ax.set_xlim(xlim[0] - factor, xlim[1])
ax.text(
xlim[0], lower_bound, s="Optimal \n value", horizontalalignment="center", verticalalignment="center"
)
if upper_bound is not None and higher_is_better:
ax.set_xlim(xlim[0] - factor, xlim[1])
ax.text(
xlim[0], upper_bound, s="Optimal \n value", horizontalalignment="center", verticalalignment="center"
)
return fig, ax
def _get_col_row_split(n: int) -> tuple[int, int]:
"""Split `n` figures into `rows` x `cols` figures."""
nsq = sqrt(n)
if int(nsq) == nsq: # square number
return int(nsq), int(nsq)
if floor(nsq) * ceil(nsq) >= n:
return floor(nsq), ceil(nsq)
return ceil(nsq), ceil(nsq)
def _get_text_color(patch_color: tuple[float, float, float, float]) -> str:
"""Get the text color for a given value and colormap.
Following Wikipedia's recommendations: https://en.wikipedia.org/wiki/Relative_luminance.
Args:
patch_color: RGBA color tuple
"""
# Convert to linear color space
r, g, b, a = patch_color
r, g, b = (c / 12.92 if c <= 0.04045 else ((c + 0.055) / 1.055) ** 2.4 for c in (r, g, b))
# Get the relative luminance
y = 0.2126 * r + 0.7152 * g + 0.0722 * b
return ".1" if y > 0.4 else "white"
def trim_axs(axs: Union[_AX_TYPE, np.ndarray], nb: int) -> Union[np.ndarray, _AX_TYPE]: # type: ignore[valid-type]
"""Reduce `axs` to `nb` Axes.
All further Axes are removed from the figure.
"""
if isinstance(axs, _AX_TYPE):
return axs
axs = axs.flat # type: ignore[union-attr]
for ax in axs[nb:]:
ax.remove()
return axs[:nb]
@style_change(_style)
@no_type_check
def plot_confusion_matrix(
confmat: Tensor,
ax: Optional[_AX_TYPE] = None,
add_text: bool = True,
labels: Optional[list[Union[int, str]]] = None,
cmap: Optional[_CMAP_TYPE] = None,
) -> _PLOT_OUT_TYPE:
"""Plot an confusion matrix.
Inspired by: https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/metrics/_plot/confusion_matrix.py.
Works for both binary, multiclass and multilabel confusion matrices.
Args:
confmat: the confusion matrix. Either should be an [N,N] matrix in the binary and multiclass cases or an
[N, 2, 2] matrix for multilabel classification
ax: Axis from a figure. If not provided, a new figure and axis will be created
add_text: if text should be added to each cell with the given value
labels: labels to add the x- and y-axis
cmap: matplotlib colormap to use for the confusion matrix
https://matplotlib.org/stable/users/explain/colors/colormaps.html
Returns:
A tuple consisting of the figure and respective ax objects (or array of ax objects) of the generated figure
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
"""
_error_on_missing_matplotlib()
if confmat.ndim == 3: # multilabel
nb, n_classes = confmat.shape[0], 2
rows, cols = _get_col_row_split(nb)
else:
nb, n_classes, rows, cols = 1, confmat.shape[0], 1, 1
if labels is not None and confmat.ndim != 3 and len(labels) != n_classes:
raise ValueError(
"Expected number of elements in arg `labels` to match number of labels in confmat but "
f"got {len(labels)} and {n_classes}"
)
if confmat.ndim == 3:
fig_label = labels or np.arange(nb)
labels = list(map(str, range(n_classes)))
else:
fig_label = None
labels = labels or np.arange(n_classes).tolist()
fig, axs = plt.subplots(nrows=rows, ncols=cols, constrained_layout=True) if ax is None else (ax.get_figure(), ax)
axs = trim_axs(axs, nb)
for i in range(nb):
ax = axs[i] if (rows != 1 or cols != 1) else axs
if fig_label is not None:
ax.set_title(f"Label {fig_label[i]}", fontsize=15)
im = ax.imshow(confmat[i].cpu().detach() if confmat.ndim == 3 else confmat.cpu().detach(), cmap=cmap)
if i // cols == rows - 1: # bottom row only
ax.set_xlabel("Predicted class", fontsize=15)
if i % cols == 0: # leftmost column only
ax.set_ylabel("True class", fontsize=15)
ax.set_xticks(list(range(n_classes)))
ax.set_yticks(list(range(n_classes)))
ax.set_xticklabels(labels, rotation=45, fontsize=10)
ax.set_yticklabels(labels, rotation=25, fontsize=10)
if add_text:
for ii, jj in product(range(n_classes), range(n_classes)):
val = confmat[i, ii, jj] if confmat.ndim == 3 else confmat[ii, jj]
patch_color = im.cmap(im.norm(val.item()))
c = _get_text_color(patch_color)
ax.text(jj, ii, str(round(val.item(), 2)), ha="center", va="center", fontsize=15, color=c)
return fig, axs
@style_change(_style)
def plot_curve(
curve: Union[tuple[Tensor, Tensor, Tensor], tuple[List[Tensor], List[Tensor], List[Tensor]]],
score: Optional[Tensor] = None,
ax: Optional[_AX_TYPE] = None, # type: ignore[valid-type]
label_names: Optional[tuple[str, str]] = None,
legend_name: Optional[str] = None,
name: Optional[str] = None,
labels: Optional[list[Union[int, str]]] = None,
) -> _PLOT_OUT_TYPE:
"""Inspired by: https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/metrics/_plot/roc_curve.py.
Plots a curve object
Args:
curve: a tuple of (x, y, t) where x and y are the coordinates of the curve and t are the thresholds used
to compute the curve
score: optional area under the curve added as label to the plot
ax: Axis from a figure
label_names: Tuple containing the names of the x and y axis
legend_name: Name of the curve to be used in the legend
name: Custom name to describe the metric
labels: Optional labels for the different curves that will be added to the plot
Returns:
A tuple consisting of the figure and respective ax objects (or array of ax objects) of the generated figure
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
ValueError:
If `curve` does not have 3 elements, being in the wrong format
"""
if len(curve) < 2:
raise ValueError(f"Expected 2 or 3 elements in curve but got {len(curve)}")
x, y = curve[:2]
_error_on_missing_matplotlib()
fig, ax = plt.subplots() if ax is None else (None, ax)
if isinstance(x, Tensor) and isinstance(y, Tensor) and x.ndim == 1 and y.ndim == 1:
label = f"AUC={score.item():0.3f}" if score is not None else None
ax.plot(x.detach().cpu(), y.detach().cpu(), linestyle="-", linewidth=2, label=label)
if label is not None:
ax.legend()
elif (isinstance(x, list) and isinstance(y, list)) or (
isinstance(x, Tensor) and isinstance(y, Tensor) and x.ndim == 2 and y.ndim == 2
):
n_classes = len(x)
if labels is not None and len(labels) != n_classes:
raise ValueError(
"Expected number of elements in arg `labels` to match number of labels in roc curves but "
f"got {len(labels)} and {n_classes}"
)
for i, (x_, y_) in enumerate(zip(x, y)):
label = f"{legend_name}_{i}" if legend_name is not None else str(i) if labels is None else str(labels[i])
label += f" AUC={score[i].item():0.3f}" if score is not None else ""
ax.plot(x_.detach().cpu(), y_.detach().cpu(), linestyle="-", linewidth=2, label=label)
ax.legend()
else:
raise ValueError(
f"Unknown format for argument `x` and `y`. Expected either list or tensors but got {type(x)} and {type(y)}."
)
if label_names is not None:
ax.set_xlabel(label_names[0])
ax.set_ylabel(label_names[1])
ax.grid(True)
ax.set_title(name)
return fig, ax
|