File size: 3,688 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from lightning_utilities.core.enums import StrEnum
from typing_extensions import Literal
class EnumStr(StrEnum):
"""Base Enum."""
@staticmethod
def _name() -> str:
return "Task"
@classmethod
def from_str(cls: type["EnumStr"], value: str, source: Literal["key", "value", "any"] = "key") -> "EnumStr":
"""Load from string.
Raises:
ValueError:
If required value is not among the supported options.
>>> class MyEnum(EnumStr):
... a = "aaa"
... b = "bbb"
>>> MyEnum.from_str("a")
<MyEnum.a: 'aaa'>
>>> MyEnum.from_str("c")
Traceback (most recent call last):
...
ValueError: Invalid Task: expected one of ['a', 'b'], but got c.
"""
try:
me = super().from_str(value.replace("-", "_"), source=source)
except ValueError as err:
_allowed_im = [m.lower() for m in cls._member_names_]
raise ValueError(
f"Invalid {cls._name()}: expected one of {cls._allowed_matches(source)}, but got {value}."
) from err
return cls(me)
class DataType(EnumStr):
"""Enum to represent data type.
>>> "Binary" in list(DataType)
True
"""
@staticmethod
def _name() -> str:
return "Data type"
BINARY = "binary"
MULTILABEL = "multi-label"
MULTICLASS = "multi-class"
MULTIDIM_MULTICLASS = "multi-dim multi-class"
class AverageMethod(EnumStr):
"""Enum to represent average method.
>>> None in list(AverageMethod)
True
>>> AverageMethod.NONE == None
True
>>> AverageMethod.NONE == 'none'
True
"""
@staticmethod
def _name() -> str:
return "Average method"
MICRO = "micro"
MACRO = "macro"
WEIGHTED = "weighted"
NONE = None
SAMPLES = "samples"
class MDMCAverageMethod(EnumStr):
"""Enum to represent multi-dim multi-class average method."""
@staticmethod
def _name() -> str:
return "MDMC Average method"
GLOBAL = "global"
SAMPLEWISE = "samplewise"
class ClassificationTask(EnumStr):
"""Enum to represent the different tasks in classification metrics.
>>> "binary" in list(ClassificationTask)
True
"""
@staticmethod
def _name() -> str:
return "Classification"
BINARY = "binary"
MULTICLASS = "multiclass"
MULTILABEL = "multilabel"
class ClassificationTaskNoBinary(EnumStr):
"""Enum to represent the different tasks in classification metrics.
>>> "binary" in list(ClassificationTaskNoBinary)
False
"""
@staticmethod
def _name() -> str:
return "Classification"
MULTILABEL = "multilabel"
MULTICLASS = "multiclass"
class ClassificationTaskNoMultilabel(EnumStr):
"""Enum to represent the different tasks in classification metrics.
>>> "multilabel" in list(ClassificationTaskNoMultilabel)
False
"""
@staticmethod
def _name() -> str:
return "Classification"
BINARY = "binary"
MULTICLASS = "multiclass"
|