File size: 9,187 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from collections.abc import Sequence
from typing import Any, List, Optional, Union

import torch
from lightning_utilities import apply_to_collection
from torch import Tensor

from torchmetrics.utilities.exceptions import TorchMetricsUserWarning
from torchmetrics.utilities.imports import _TORCH_LESS_THAN_2_6, _XLA_AVAILABLE
from torchmetrics.utilities.prints import rank_zero_warn

METRIC_EPS = 1e-6


def dim_zero_cat(x: Union[Tensor, List[Tensor]]) -> Tensor:
    """Concatenation along the zero dimension."""
    if isinstance(x, torch.Tensor):
        return x
    x = [y.unsqueeze(0) if y.numel() == 1 and y.ndim == 0 else y for y in x]
    if not x:  # empty list
        raise ValueError("No samples to concatenate")
    return torch.cat(x, dim=0)


def dim_zero_sum(x: Tensor) -> Tensor:
    """Summation along the zero dimension."""
    return torch.sum(x, dim=0)


def dim_zero_mean(x: Tensor) -> Tensor:
    """Average along the zero dimension."""
    return torch.mean(x, dim=0)


def dim_zero_max(x: Tensor) -> Tensor:
    """Max along the zero dimension."""
    return torch.max(x, dim=0).values


def dim_zero_min(x: Tensor) -> Tensor:
    """Min along the zero dimension."""
    return torch.min(x, dim=0).values


def _flatten(x: Sequence) -> list:
    """Flatten list of list into single list."""
    return [item for sublist in x for item in sublist]


def _flatten_dict(x: dict) -> tuple[dict, bool]:
    """Flatten dict of dicts into single dict and checking for duplicates in keys along the way."""
    new_dict = {}
    duplicates = False
    for key, value in x.items():
        if isinstance(value, dict):
            for k, v in value.items():
                if k in new_dict:
                    duplicates = True
                new_dict[k] = v
        else:
            if key in new_dict:
                duplicates = True
            new_dict[key] = value
    return new_dict, duplicates


def to_onehot(
    label_tensor: Tensor,
    num_classes: Optional[int] = None,
) -> Tensor:
    """Convert  a dense label tensor to one-hot format.

    Args:
        label_tensor: dense label tensor, with shape [N, d1, d2, ...]
        num_classes: number of classes C

    Returns:
        A sparse label tensor with shape [N, C, d1, d2, ...]

    Example:
        >>> x = torch.tensor([1, 2, 3])
        >>> to_onehot(x)
        tensor([[0, 1, 0, 0],
                [0, 0, 1, 0],
                [0, 0, 0, 1]])

    """
    if num_classes is None:
        num_classes = int(label_tensor.max().detach().item() + 1)

    tensor_onehot = torch.zeros(
        label_tensor.shape[0],
        num_classes,
        *label_tensor.shape[1:],
        dtype=label_tensor.dtype,
        device=label_tensor.device,
    )
    index = label_tensor.long().unsqueeze(1).expand_as(tensor_onehot)
    return tensor_onehot.scatter_(1, index, 1.0)


def _top_k_with_half_precision_support(x: Tensor, k: int = 1, dim: int = 1) -> Tensor:
    """torch.top_k does not support half precision on CPU."""
    if x.dtype == torch.half and not x.is_cuda:
        idx = torch.argsort(x, dim=dim, stable=True).flip(dim)
        return idx.narrow(dim, 0, k)
    return x.topk(k=k, dim=dim).indices


def select_topk(prob_tensor: Tensor, topk: int = 1, dim: int = 1) -> Tensor:
    """Convert a probability tensor to binary by selecting top-k the highest entries.

    Args:
        prob_tensor: dense tensor of shape ``[..., C, ...]``, where ``C`` is in the
            position defined by the ``dim`` argument
        topk: number of the highest entries to turn into 1s
        dim: dimension on which to compare entries

    Returns:
        A binary tensor of the same shape as the input tensor of type ``torch.int32``

    Example:
        >>> x = torch.tensor([[1.1, 2.0, 3.0], [2.0, 1.0, 0.5]])
        >>> select_topk(x, topk=2)
        tensor([[0, 1, 1],
                [1, 1, 0]], dtype=torch.int32)

    """
    topk_tensor = torch.zeros_like(prob_tensor, dtype=torch.int)
    if topk == 1:  # argmax has better performance than topk
        topk_tensor.scatter_(dim, prob_tensor.argmax(dim=dim, keepdim=True), 1.0)
    else:
        topk_tensor.scatter_(dim, _top_k_with_half_precision_support(prob_tensor, k=topk, dim=dim), 1.0)
    return topk_tensor.int()


def to_categorical(x: Tensor, argmax_dim: int = 1) -> Tensor:
    """Convert  a tensor of probabilities to a dense label tensor.

    Args:
        x: probabilities to get the categorical label [N, d1, d2, ...]
        argmax_dim: dimension to apply

    Return:
        A tensor with categorical labels [N, d2, ...]

    Example:
        >>> x = torch.tensor([[0.2, 0.5], [0.9, 0.1]])
        >>> to_categorical(x)
        tensor([1, 0])

    """
    return torch.argmax(x, dim=argmax_dim)


def _squeeze_scalar_element_tensor(x: Tensor) -> Tensor:
    return x.squeeze() if x.numel() == 1 else x


def _squeeze_if_scalar(data: Any) -> Any:
    return apply_to_collection(data, Tensor, _squeeze_scalar_element_tensor)


def _bincount(x: Tensor, minlength: Optional[int] = None) -> Tensor:
    """Implement custom bincount.

    PyTorch currently does not support ``torch.bincount`` when running in deterministic mode on GPU or when running
    MPS devices or when running on XLA device. This implementation therefore falls back to using a combination of
    `torch.arange` and `torch.eq` in these scenarios. A small performance hit can expected and higher memory consumption
    as `[batch_size, mincount]` tensor needs to be initialized compared to native ``torch.bincount``.

    Args:
        x: tensor to count
        minlength: minimum length to count

    Returns:
        Number of occurrences for each unique element in x

    Example:
        >>> x = torch.tensor([0,0,0,1,1,2,2,2,2])
        >>> _bincount(x, minlength=3)
        tensor([3, 2, 4])

    """
    if minlength is None:
        minlength = len(torch.unique(x))

    if torch.are_deterministic_algorithms_enabled() or _XLA_AVAILABLE or x.is_mps:
        mesh = torch.arange(minlength, device=x.device).repeat(len(x), 1)
        return torch.eq(x.reshape(-1, 1), mesh).sum(dim=0)

    return torch.bincount(x, minlength=minlength)


def _cumsum(x: Tensor, dim: Optional[int] = 0, dtype: Optional[torch.dtype] = None) -> Tensor:
    """Implement custom cumulative summation for Torch versions which does not support it natively."""
    is_cuda_fp_deterministic = torch.are_deterministic_algorithms_enabled() and x.is_cuda and x.is_floating_point()
    if _TORCH_LESS_THAN_2_6 and is_cuda_fp_deterministic and sys.platform != "win32":
        rank_zero_warn(
            "You are trying to use a metric in deterministic mode on GPU that uses `torch.cumsum`, which is currently"
            " not supported. The tensor will be copied to the CPU memory to compute it and then copied back to GPU."
            " Expect some slowdowns.",
            TorchMetricsUserWarning,
        )
        return x.cpu().cumsum(dim=dim, dtype=dtype).to(x.device)
    return torch.cumsum(x, dim=dim, dtype=dtype)


def _flexible_bincount(x: Tensor) -> Tensor:
    """Similar to `_bincount`, but works also with tensor that do not contain continuous values.

    Args:
        x: tensor to count

    Returns:
        Number of occurrences for each unique element in x

    """
    # make sure elements in x start from 0
    x = x - x.min()
    unique_x = torch.unique(x)

    output = _bincount(x, minlength=torch.max(unique_x) + 1)  # type: ignore[arg-type]
    # remove zeros from output tensor
    return output[unique_x]


def allclose(tensor1: Tensor, tensor2: Tensor) -> bool:
    """Wrap torch.allclose to be robust towards dtype difference."""
    if tensor1.dtype != tensor2.dtype:
        tensor2 = tensor2.to(dtype=tensor1.dtype)
    return torch.allclose(tensor1, tensor2)


def interp(x: Tensor, xp: Tensor, fp: Tensor) -> Tensor:
    """Interpolation function comparable to numpy.interp.

    Args:
        x: x-coordinates where to evaluate the interpolated values
        xp: x-coordinates of the data points
        fp: y-coordinates of the data points

    """
    # Sort xp and fp based on xp for compatibility with np.interp
    sorted_indices = torch.argsort(xp)
    xp = xp[sorted_indices]
    fp = fp[sorted_indices]

    # Calculate slopes for each interval
    slopes = (fp[1:] - fp[:-1]) / (xp[1:] - xp[:-1])

    # Identify where x falls relative to xp
    indices = torch.searchsorted(xp, x) - 1
    indices = torch.clamp(indices, 0, len(slopes) - 1)

    # Compute interpolated values
    return fp[indices] + slopes[indices] * (x - xp[indices])