File size: 10,949 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections.abc import Sequence
from typing import Any, ClassVar, List, Optional, Union
import torch
from torch import Tensor
from torchmetrics.functional.text.helper_embedding_metric import _load_tokenizer_and_model
from torchmetrics.functional.text.infolm import (
_ALLOWED_INFORMATION_MEASURE_LITERAL,
_get_dataloader,
_get_special_tokens_map,
_infolm_compute,
_infolm_update,
_InformationMeasure,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TRANSFORMERS_GREATER_EQUAL_4_4
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["InfoLM.plot"]
if not _TRANSFORMERS_GREATER_EQUAL_4_4:
__doctest_skip__ = ["InfoLM", "InfoLM.plot"]
class InfoLM(Metric):
"""Calculate `InfoLM`_.
InfoLM measures a distance/divergence between predicted and reference sentence discrete distribution using one of
the following information measures:
- `KL divergence`_
- `alpha divergence`_
- `beta divergence`_
- `AB divergence`_
- `RΓ©nyi divergence`_
- L1 distance
- L2 distance
- L-infinity distance
- `Fisher-Rao distance`_
`InfoLM`_ is a family of untrained embedding-based metrics which addresses some famous flaws of standard
string-based metrics thanks to the usage of pre-trained masked language models. This family of metrics is mainly
designed for summarization and data-to-text tasks.
The implementation of this metric is fully based HuggingFace ``transformers``' package.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~Sequence`): An iterable of hypothesis corpus
- ``target`` (:class:`~Sequence`): An iterable of reference corpus
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``infolm`` (:class:`~torch.Tensor`): If `return_sentence_level_score=True` return a tuple with a tensor
with the corpus-level InfoLM score and a list of sentence-level InfoLM scores, else return a corpus-level
InfoLM score
Args:
model_name_or_path:
A name or a model path used to load ``transformers`` pretrained model.
By default the `"bert-base-uncased"` model is used.
temperature:
A temperature for calibrating language modelling. For more information, please reference `InfoLM`_ paper.
information_measure:
A name of information measure to be used. Please use one of: ['kl_divergence', 'alpha_divergence',
'beta_divergence', 'ab_divergence', 'renyi_divergence', 'l1_distance', 'l2_distance', 'l_infinity_distance',
'fisher_rao_distance']
idf:
An indication of whether normalization using inverse document frequencies should be used.
alpha:
Alpha parameter of the divergence used for alpha, AB and RΓ©nyi divergence measures.
beta:
Beta parameter of the divergence used for beta and AB divergence measures.
device:
A device to be used for calculation.
max_length:
A maximum length of input sequences. Sequences longer than ``max_length`` are to be trimmed.
batch_size:
A batch size used for model processing.
num_threads:
A number of threads to use for a dataloader.
verbose:
An indication of whether a progress bar to be displayed during the embeddings calculation.
return_sentence_level_score:
An indication whether a sentence-level InfoLM score to be returned.
Example:
>>> from torchmetrics.text.infolm import InfoLM
>>> preds = ['he read the book because he was interested in world history']
>>> target = ['he was interested in world history because he read the book']
>>> infolm = InfoLM('google/bert_uncased_L-2_H-128_A-2', idf=False)
>>> infolm(preds, target)
tensor(-0.1784)
"""
is_differentiable = False
preds_input_ids: List[Tensor]
preds_attention_mask: List[Tensor]
target_input_ids: List[Tensor]
target_attention_mask: List[Tensor]
_information_measure_higher_is_better: ClassVar = {
# following values are <0
"kl_divergence": True,
"alpha_divergence": True,
# following values are >0
"beta_divergence": False,
"ab_divergence": False,
"renyi_divergence": False,
"l1_distance": False,
"l2_distance": False,
"l_infinity_distance": False,
"fisher_rao_distance": False,
}
def __init__(
self,
model_name_or_path: Union[str, os.PathLike] = "bert-base-uncased",
temperature: float = 0.25,
information_measure: _ALLOWED_INFORMATION_MEASURE_LITERAL = "kl_divergence",
idf: bool = True,
alpha: Optional[float] = None,
beta: Optional[float] = None,
device: Optional[Union[str, torch.device]] = None,
max_length: Optional[int] = None,
batch_size: int = 64,
num_threads: int = 0,
verbose: bool = True,
return_sentence_level_score: bool = False,
**kwargs: dict[str, Any],
) -> None:
super().__init__(**kwargs)
self.model_name_or_path = model_name_or_path
self.temperature = temperature
self.information_measure = information_measure
self.idf = idf
self.alpha = alpha
self.beta = beta
self._device = torch.device(device or "cpu")
self.batch_size = batch_size
self.num_threads = num_threads
self.verbose = verbose
self.return_sentence_level_score = return_sentence_level_score
self.tokenizer, self.model = _load_tokenizer_and_model(model_name_or_path, device)
self.information_measure_cls = _InformationMeasure(information_measure, alpha, beta)
self.max_length = max_length or self.model.config.max_length
self.special_tokens_map = _get_special_tokens_map(self.tokenizer)
self.add_state("preds_input_ids", [], dist_reduce_fx="cat")
self.add_state("preds_attention_mask", [], dist_reduce_fx="cat")
self.add_state("target_input_ids", [], dist_reduce_fx="cat")
self.add_state("target_attention_mask", [], dist_reduce_fx="cat")
@property
def higher_is_better(self) -> bool: # type: ignore[override]
"""Returns a bool indicating whether a higher value of the information measure is better.
Done this way as depends on if the information measure is positive or negative.
"""
return self._information_measure_higher_is_better[self.information_measure]
def update(self, preds: Union[str, Sequence[str]], target: Union[str, Sequence[str]]) -> None:
"""Update state with predictions and targets."""
preds_input_ids, preds_attention_mask, target_input_ids, target_attention_mask = _infolm_update(
preds, target, self.tokenizer, self.max_length
)
self.preds_input_ids.append(preds_input_ids)
self.preds_attention_mask.append(preds_attention_mask)
self.target_input_ids.append(target_input_ids)
self.target_attention_mask.append(target_attention_mask)
def compute(self) -> Union[Tensor, tuple[Tensor, Tensor]]:
"""Calculate selected information measure using the pre-trained language model."""
preds_dataloader = _get_dataloader(
input_ids=dim_zero_cat(self.preds_input_ids),
attention_mask=dim_zero_cat(self.preds_attention_mask),
idf=self.idf,
batch_size=self.batch_size,
num_workers=self.num_threads,
)
target_dataloader = _get_dataloader(
input_ids=dim_zero_cat(self.target_input_ids),
attention_mask=dim_zero_cat(self.target_attention_mask),
idf=self.idf,
batch_size=self.batch_size,
num_workers=self.num_threads,
)
info_lm_score = _infolm_compute(
self.model,
preds_dataloader,
target_dataloader,
self.temperature,
self.idf,
self.information_measure_cls,
self.special_tokens_map,
self.verbose,
)
if self.return_sentence_level_score:
return info_lm_score.mean(), info_lm_score
return info_lm_score.mean()
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torchmetrics.text.infolm import InfoLM
>>> metric = InfoLM('google/bert_uncased_L-2_H-128_A-2', idf=False)
>>> preds = ['he read the book because he was interested in world history']
>>> target = ['he was interested in world history because he read the book']
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torchmetrics.text.infolm import InfoLM
>>> metric = InfoLM('google/bert_uncased_L-2_H-128_A-2', idf=False)
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|