File size: 6,381 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union
from torch import Tensor, stack
from typing_extensions import Literal
from torchmetrics.functional.text.eed import _eed_compute, _eed_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["ExtendedEditDistance.plot"]
class ExtendedEditDistance(Metric):
"""Compute extended edit distance score (`ExtendedEditDistance`_) for strings or list of strings.
The metric utilises the Levenshtein distance and extends it by adding a jump operation.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~Sequence`): An iterable of hypothesis corpus
- ``target`` (:class:`~Sequence`): An iterable of iterables of reference corpus
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``eed`` (:class:`~torch.Tensor`): A tensor with the extended edit distance score
Args:
language: Language used in sentences. Only supports English (en) and Japanese (ja) for now.
return_sentence_level_score: An indication of whether sentence-level EED score is to be returned
alpha: optimal jump penalty, penalty for jumps between characters
rho: coverage cost, penalty for repetition of characters
deletion: penalty for deletion of character
insertion: penalty for insertion or substitution of character
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torchmetrics.text import ExtendedEditDistance
>>> preds = ["this is the prediction", "here is an other sample"]
>>> target = ["this is the reference", "here is another one"]
>>> eed = ExtendedEditDistance()
>>> eed(preds=preds, target=target)
tensor(0.3078)
"""
higher_is_better: bool = False
is_differentiable: bool = False
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
sentence_eed: List[Tensor]
def __init__(
self,
language: Literal["en", "ja"] = "en",
return_sentence_level_score: bool = False,
alpha: float = 2.0,
rho: float = 0.3,
deletion: float = 0.2,
insertion: float = 1.0,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if language not in ("en", "ja"):
raise ValueError(f"Expected argument `language` to either be `en` or `ja` but got {language}")
self.language: Literal["en", "ja"] = language
self.return_sentence_level_score = return_sentence_level_score
# input validation for parameters
for param_name, param in zip(["alpha", "rho", "deletion", "insertion"], [alpha, rho, deletion, insertion]):
if not isinstance(param, float) or (isinstance(param, float) and param < 0):
raise ValueError(f"Parameter `{param_name}` is expected to be a non-negative float.")
self.alpha = alpha
self.rho = rho
self.deletion = deletion
self.insertion = insertion
self.add_state("sentence_eed", [], dist_reduce_fx="cat")
def update(
self,
preds: Union[str, Sequence[str]],
target: Sequence[Union[str, Sequence[str]]],
) -> None:
"""Update state with predictions and targets."""
self.sentence_eed = _eed_update(
preds,
target,
self.language,
self.alpha,
self.rho,
self.deletion,
self.insertion,
self.sentence_eed,
)
def compute(self) -> Union[Tensor, tuple[Tensor, Tensor]]:
"""Calculate extended edit distance score."""
average = _eed_compute(self.sentence_eed)
if self.return_sentence_level_score:
return average, stack(self.sentence_eed)
return average
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torchmetrics.text import ExtendedEditDistance
>>> metric = ExtendedEditDistance()
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torchmetrics.text import ExtendedEditDistance
>>> metric = ExtendedEditDistance()
>>> preds = ["this is the prediction", "there is an other sample"]
>>> target = ["this is the reference", "there is another one"]
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|