File size: 6,381 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union

from torch import Tensor, stack
from typing_extensions import Literal

from torchmetrics.functional.text.eed import _eed_compute, _eed_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["ExtendedEditDistance.plot"]


class ExtendedEditDistance(Metric):
    """Compute extended edit distance score (`ExtendedEditDistance`_) for strings or list of strings.

    The metric utilises the Levenshtein distance and extends it by adding a jump operation.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~Sequence`): An iterable of hypothesis corpus
    - ``target`` (:class:`~Sequence`): An iterable of iterables of reference corpus

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``eed`` (:class:`~torch.Tensor`): A tensor with the extended edit distance score

    Args:
        language: Language used in sentences. Only supports English (en) and Japanese (ja) for now.
        return_sentence_level_score: An indication of whether sentence-level EED score is to be returned
        alpha: optimal jump penalty, penalty for jumps between characters
        rho: coverage cost, penalty for repetition of characters
        deletion: penalty for deletion of character
        insertion: penalty for insertion or substitution of character
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example:
        >>> from torchmetrics.text import ExtendedEditDistance
        >>> preds = ["this is the prediction", "here is an other sample"]
        >>> target = ["this is the reference", "here is another one"]
        >>> eed = ExtendedEditDistance()
        >>> eed(preds=preds, target=target)
        tensor(0.3078)

    """

    higher_is_better: bool = False
    is_differentiable: bool = False
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    sentence_eed: List[Tensor]

    def __init__(
        self,
        language: Literal["en", "ja"] = "en",
        return_sentence_level_score: bool = False,
        alpha: float = 2.0,
        rho: float = 0.3,
        deletion: float = 0.2,
        insertion: float = 1.0,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)

        if language not in ("en", "ja"):
            raise ValueError(f"Expected argument `language` to either be `en` or `ja` but got {language}")
        self.language: Literal["en", "ja"] = language
        self.return_sentence_level_score = return_sentence_level_score

        # input validation for parameters
        for param_name, param in zip(["alpha", "rho", "deletion", "insertion"], [alpha, rho, deletion, insertion]):
            if not isinstance(param, float) or (isinstance(param, float) and param < 0):
                raise ValueError(f"Parameter `{param_name}` is expected to be a non-negative float.")

        self.alpha = alpha
        self.rho = rho
        self.deletion = deletion
        self.insertion = insertion

        self.add_state("sentence_eed", [], dist_reduce_fx="cat")

    def update(
        self,
        preds: Union[str, Sequence[str]],
        target: Sequence[Union[str, Sequence[str]]],
    ) -> None:
        """Update state with predictions and targets."""
        self.sentence_eed = _eed_update(
            preds,
            target,
            self.language,
            self.alpha,
            self.rho,
            self.deletion,
            self.insertion,
            self.sentence_eed,
        )

    def compute(self) -> Union[Tensor, tuple[Tensor, Tensor]]:
        """Calculate extended edit distance score."""
        average = _eed_compute(self.sentence_eed)

        if self.return_sentence_level_score:
            return average, stack(self.sentence_eed)
        return average

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> from torchmetrics.text import ExtendedEditDistance
            >>> metric = ExtendedEditDistance()
            >>> preds = ["this is the prediction", "there is an other sample"]
            >>> target = ["this is the reference", "there is another one"]
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> from torchmetrics.text import ExtendedEditDistance
            >>> metric = ExtendedEditDistance()
            >>> preds = ["this is the prediction", "there is an other sample"]
            >>> target = ["this is the reference", "there is another one"]
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(preds, target))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)