File size: 5,884 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# referenced from
# Library Name: torchtext
# Authors: torchtext authors and @sluks
# Date: 2020-07-18
# Link: https://pytorch.org/text/_modules/torchtext/data/metrics.html#bleu_score
from collections.abc import Sequence
from typing import Any, Optional, Union

import torch
from torch import Tensor, tensor

from torchmetrics import Metric
from torchmetrics.functional.text.bleu import _bleu_score_compute, _bleu_score_update, _tokenize_fn
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["BLEUScore.plot"]


class BLEUScore(Metric):
    """Calculate `BLEU score`_ of machine translated text with one or more references.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~Sequence`): An iterable of machine translated corpus
    - ``target`` (:class:`~Sequence`): An iterable of iterables of reference corpus

    As output of ``forward`` and ``update`` the metric returns the following output:

    - ``bleu`` (:class:`~torch.Tensor`): A tensor with the BLEU Score

    Args:
        n_gram: Gram value ranged from 1 to 4
        smooth: Whether or not to apply smoothing, see `Machine Translation Evolution`_
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
        weights:
            Weights used for unigrams, bigrams, etc. to calculate BLEU score.
            If not provided, uniform weights are used.

    Raises:
        ValueError: If a length of a list of weights is not ``None`` and not equal to ``n_gram``.

    Example:
        >>> from torchmetrics.text import BLEUScore
        >>> preds = ['the cat is on the mat']
        >>> target = [['there is a cat on the mat', 'a cat is on the mat']]
        >>> bleu = BLEUScore()
        >>> bleu(preds, target)
        tensor(0.7598)

    """

    is_differentiable: bool = False
    higher_is_better: bool = True
    full_state_update: bool = True
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    preds_len: Tensor
    target_len: Tensor
    numerator: Tensor
    denominator: Tensor

    def __init__(
        self,
        n_gram: int = 4,
        smooth: bool = False,
        weights: Optional[Sequence[float]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.n_gram = n_gram
        self.smooth = smooth
        if weights is not None and len(weights) != n_gram:
            raise ValueError(f"List of weights has different weights than `n_gram`: {len(weights)} != {n_gram}")
        self.weights = weights if weights is not None else [1.0 / n_gram] * n_gram

        self.add_state("preds_len", tensor(0.0), dist_reduce_fx="sum")
        self.add_state("target_len", tensor(0.0), dist_reduce_fx="sum")
        self.add_state("numerator", torch.zeros(self.n_gram), dist_reduce_fx="sum")
        self.add_state("denominator", torch.zeros(self.n_gram), dist_reduce_fx="sum")

    def update(self, preds: Sequence[str], target: Sequence[Sequence[str]]) -> None:
        """Update state with predictions and targets."""
        self.preds_len, self.target_len = _bleu_score_update(
            preds,
            target,
            self.numerator,
            self.denominator,
            self.preds_len,
            self.target_len,
            self.n_gram,
            _tokenize_fn,
        )

    def compute(self) -> Tensor:
        """Calculate BLEU score."""
        return _bleu_score_compute(
            self.preds_len, self.target_len, self.numerator, self.denominator, self.n_gram, self.weights, self.smooth
        )

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> from torchmetrics.text import BLEUScore
            >>> metric = BLEUScore()
            >>> preds = ['the cat is on the mat']
            >>> target = [['there is a cat on the mat', 'a cat is on the mat']]
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> from torchmetrics.text import BLEUScore
            >>> metric = BLEUScore()
            >>> preds = ['the cat is on the mat']
            >>> target = [['there is a cat on the mat', 'a cat is on the mat']]
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(preds, target))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)