File size: 5,627 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Optional, Union

from torch import Tensor

from torchmetrics.functional.retrieval.r_precision import retrieval_r_precision
from torchmetrics.retrieval.base import RetrievalMetric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["RetrievalRPrecision.plot"]


class RetrievalRPrecision(RetrievalMetric):
    """Compute `IR R-Precision`_.

    Works with binary target data. Accepts float predictions from a model output.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~torch.Tensor`): A float tensor of shape ``(N, ...)``
    - ``target`` (:class:`~torch.Tensor`): A long or bool tensor of shape ``(N, ...)``
    - ``indexes`` (:class:`~torch.Tensor`): A long tensor of shape ``(N, ...)`` which indicate to which query a
      prediction belongs

    As output to ``forward`` and ``compute`` the metric returns the following output:

    - ``rp`` (:class:`~torch.Tensor`): A single-value tensor with the r-precision of the predictions ``preds``
      w.r.t. the labels ``target``.

    All ``indexes``, ``preds`` and ``target`` must have the same dimension and will be flatten at the beginning,
    so that for example, a tensor of shape ``(N, M)`` is treated as ``(N * M, )``. Predictions will be first grouped by
    ``indexes`` and then will be computed as the mean of the metric over each query.

    Args:
        empty_target_action:
            Specify what to do with queries that do not have at least a positive ``target``. Choose from:

            - ``'neg'``: those queries count as ``0.0`` (default)
            - ``'pos'``: those queries count as ``1.0``
            - ``'skip'``: skip those queries; if all queries are skipped, ``0.0`` is returned
            - ``'error'``: raise a ``ValueError``

        ignore_index: Ignore predictions where the target is equal to this number.
        aggregation:
            Specify how to aggregate over indexes. Can either a custom callable function that takes in a single tensor
            and returns a scalar value or one of the following strings:

            - ``'mean'``: average value is returned
            - ``'median'``: median value is returned
            - ``'max'``: max value is returned
            - ``'min'``: min value is returned

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ValueError:
            If ``empty_target_action`` is not one of ``error``, ``skip``, ``neg`` or ``pos``.
        ValueError:
            If ``ignore_index`` is not `None` or an integer.

    Example:
        >>> from torch import tensor
        >>> from torchmetrics.retrieval import RetrievalRPrecision
        >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
        >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
        >>> target = tensor([False, False, True, False, True, False, True])
        >>> p2 = RetrievalRPrecision()
        >>> p2(preds, target, indexes=indexes)
        tensor(0.7500)

    """

    is_differentiable: bool = False
    higher_is_better: bool = True
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    def _metric(self, preds: Tensor, target: Tensor) -> Tensor:
        return retrieval_r_precision(preds, target)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> import torch
            >>> from torchmetrics.retrieval import RetrievalRPrecision
            >>> # Example plotting a single value
            >>> metric = RetrievalRPrecision()
            >>> metric.update(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,)))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> import torch
            >>> from torchmetrics.retrieval import RetrievalRPrecision
            >>> # Example plotting multiple values
            >>> metric = RetrievalRPrecision()
            >>> values = []
            >>> for _ in range(10):
            ...     values.append(metric(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,))))
            >>> fig, ax = metric.plot(values)

        """
        return self._plot(val, ax)