File size: 6,538 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Callable, Optional, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.retrieval.hit_rate import retrieval_hit_rate
from torchmetrics.retrieval.base import RetrievalMetric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["RetrievalHitRate.plot"]
class RetrievalHitRate(RetrievalMetric):
"""Compute `IR HitRate`.
Works with binary target data. Accepts float predictions from a model output.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): A float tensor of shape ``(N, ...)``
- ``target`` (:class:`~torch.Tensor`): A long or bool tensor of shape ``(N, ...)``
- ``indexes`` (:class:`~torch.Tensor`): A long tensor of shape ``(N, ...)`` which indicate to which query a
prediction belongs
As output to ``forward`` and ``compute`` the metric returns the following output:
- ``hr@k`` (:class:`~torch.Tensor`): A single-value tensor with the hit rate (at ``top_k``) of the predictions
``preds`` w.r.t. the labels ``target``
All ``indexes``, ``preds`` and ``target`` must have the same dimension and will be flatten at the beginning,
so that for example, a tensor of shape ``(N, M)`` is treated as ``(N * M, )``. Predictions will be first grouped by
``indexes`` and then will be computed as the mean of the metric over each query.
Args:
empty_target_action:
Specify what to do with queries that do not have at least a positive ``target``. Choose from:
- ``'neg'``: those queries count as ``0.0`` (default)
- ``'pos'``: those queries count as ``1.0``
- ``'skip'``: skip those queries; if all queries are skipped, ``0.0`` is returned
- ``'error'``: raise a ``ValueError``
ignore_index: Ignore predictions where the target is equal to this number.
top_k: Consider only the top k elements for each query (default: ``None``, which considers them all)
aggregation:
Specify how to aggregate over indexes. Can either a custom callable function that takes in a single tensor
and returns a scalar value or one of the following strings:
- ``'mean'``: average value is returned
- ``'median'``: median value is returned
- ``'max'``: max value is returned
- ``'min'``: min value is returned
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``empty_target_action`` is not one of ``error``, ``skip``, ``neg`` or ``pos``.
ValueError:
If ``ignore_index`` is not `None` or an integer.
ValueError:
If ``top_k`` is not ``None`` or not an integer greater than 0.
Example:
>>> from torch import tensor
>>> from torchmetrics.retrieval import RetrievalHitRate
>>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
>>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
>>> target = tensor([True, False, False, False, True, False, True])
>>> hr2 = RetrievalHitRate(top_k=2)
>>> hr2(preds, target, indexes=indexes)
tensor(0.5000)
"""
is_differentiable: bool = False
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
def __init__(
self,
empty_target_action: str = "neg",
ignore_index: Optional[int] = None,
top_k: Optional[int] = None,
aggregation: Union[Literal["mean", "median", "min", "max"], Callable] = "mean",
**kwargs: Any,
) -> None:
super().__init__(
empty_target_action=empty_target_action,
ignore_index=ignore_index,
aggregation=aggregation,
**kwargs,
)
if top_k is not None and not (isinstance(top_k, int) and top_k > 0):
raise ValueError("`top_k` has to be a positive integer or None")
self.top_k = top_k
def _metric(self, preds: Tensor, target: Tensor) -> Tensor:
return retrieval_hit_rate(preds, target, top_k=self.top_k)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> import torch
>>> from torchmetrics.retrieval import RetrievalHitRate
>>> # Example plotting a single value
>>> metric = RetrievalHitRate()
>>> metric.update(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,)))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> import torch
>>> from torchmetrics.retrieval import RetrievalHitRate
>>> # Example plotting multiple values
>>> metric = RetrievalHitRate()
>>> values = []
>>> for _ in range(10):
... values.append(metric(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,))))
>>> fig, ax = metric.plot(values)
"""
return self._plot(val, ax)
|