File size: 8,186 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Callable, Optional, Union

import torch
from torch import Tensor, tensor
from typing_extensions import Literal

from torchmetrics.functional.retrieval.fall_out import retrieval_fall_out
from torchmetrics.retrieval.base import RetrievalMetric, _retrieval_aggregate
from torchmetrics.utilities.data import _flexible_bincount, dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["RetrievalFallOut.plot"]


class RetrievalFallOut(RetrievalMetric):
    """Compute `Fall-out`_.

    Works with binary target data. Accepts float predictions from a model output.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~torch.Tensor`): A float tensor of shape ``(N, ...)``
    - ``target`` (:class:`~torch.Tensor`): A long or bool tensor of shape ``(N, ...)``
    - ``indexes`` (:class:`~torch.Tensor`): A long tensor of shape ``(N, ...)`` which indicate to which query a
      prediction belongs

    As output to ``forward`` and ``compute`` the metric returns the following output:

    - ``fallout@k`` (:class:`~torch.Tensor`): A tensor with the computed metric

    All ``indexes``, ``preds`` and ``target`` must have the same dimension and will be flatten at the beginning,
    so that for example, a tensor of shape ``(N, M)`` is treated as ``(N * M, )``. Predictions will be first grouped by
    ``indexes`` and then will be computed as the mean of the metric over each query.

    Args:
        empty_target_action:
            Specify what to do with queries that do not have at least a negative ``target``. Choose from:

            - ``'neg'``: those queries count as ``0.0`` (default)
            - ``'pos'``: those queries count as ``1.0``
            - ``'skip'``: skip those queries; if all queries are skipped, ``0.0`` is returned
            - ``'error'``: raise a ``ValueError``

        ignore_index: Ignore predictions where the target is equal to this number.
        top_k: Consider only the top k elements for each query (default: `None`, which considers them all)
        aggregation:
            Specify how to aggregate over indexes. Can either a custom callable function that takes in a single tensor
            and returns a scalar value or one of the following strings:

            - ``'mean'``: average value is returned
            - ``'median'``: median value is returned
            - ``'max'``: max value is returned
            - ``'min'``: min value is returned

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ValueError:
            If ``empty_target_action`` is not one of ``error``, ``skip``, ``neg`` or ``pos``.
        ValueError:
            If ``ignore_index`` is not `None` or an integer.
        ValueError:
            If ``top_k`` is not ``None`` or not an integer greater than 0.

    Example:
        >>> from torchmetrics.retrieval import RetrievalFallOut
        >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
        >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
        >>> target = tensor([False, False, True, False, True, False, True])
        >>> rfo = RetrievalFallOut(top_k=2)
        >>> rfo(preds, target, indexes=indexes)
        tensor(0.5000)

    """

    is_differentiable: bool = False
    higher_is_better: bool = False
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    def __init__(
        self,
        empty_target_action: str = "pos",
        ignore_index: Optional[int] = None,
        top_k: Optional[int] = None,
        aggregation: Union[Literal["mean", "median", "min", "max"], Callable] = "mean",
        **kwargs: Any,
    ) -> None:
        super().__init__(
            empty_target_action=empty_target_action,
            ignore_index=ignore_index,
            aggregation=aggregation,
            **kwargs,
        )

        if top_k is not None and not (isinstance(top_k, int) and top_k > 0):
            raise ValueError("`top_k` has to be a positive integer or None")
        self.top_k = top_k

    def compute(self) -> Tensor:
        """First concat state ``indexes``, ``preds`` and ``target`` since they were stored as lists.

        After that, compute list of groups that will help in keeping together predictions about the same query. Finally,
        for each group compute the `_metric` if the number of negative targets is at least 1, otherwise behave as
        specified by `self.empty_target_action`.

        """
        indexes = dim_zero_cat(self.indexes)
        preds = dim_zero_cat(self.preds)
        target = dim_zero_cat(self.target)

        indexes, indices = torch.sort(indexes)
        preds = preds[indices]
        target = target[indices]

        split_sizes = _flexible_bincount(indexes).detach().cpu().tolist()

        res = []
        for mini_preds, mini_target in zip(
            torch.split(preds, split_sizes, dim=0), torch.split(target, split_sizes, dim=0)
        ):
            if not (1 - mini_target).sum():
                if self.empty_target_action == "error":
                    raise ValueError("`compute` method was provided with a query with no negative target.")
                if self.empty_target_action == "pos":
                    res.append(tensor(1.0))
                elif self.empty_target_action == "neg":
                    res.append(tensor(0.0))
            else:
                # ensure list contains only float tensors
                res.append(self._metric(mini_preds, mini_target))

        return (
            _retrieval_aggregate(torch.stack([x.to(preds) for x in res]), aggregation=self.aggregation)
            if res
            else tensor(0.0).to(preds)
        )

    def _metric(self, preds: Tensor, target: Tensor) -> Tensor:
        return retrieval_fall_out(preds, target, top_k=self.top_k)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> import torch
            >>> from torchmetrics.retrieval import RetrievalFallOut
            >>> # Example plotting a single value
            >>> metric = RetrievalFallOut()
            >>> metric.update(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,)))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> import torch
            >>> from torchmetrics.retrieval import RetrievalFallOut
            >>> # Example plotting multiple values
            >>> metric = RetrievalFallOut()
            >>> values = []
            >>> for _ in range(10):
            ...     values.append(metric(torch.rand(10,), torch.randint(2, (10,)), indexes=torch.randint(2,(10,))))
            >>> fig, ax = metric.plot(values)

        """
        return self._plot(val, ax)