File size: 9,222 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from typing import Any, Optional

from torchmetrics.retrieval.average_precision import RetrievalMAP
from torchmetrics.retrieval.fall_out import RetrievalFallOut
from torchmetrics.retrieval.hit_rate import RetrievalHitRate
from torchmetrics.retrieval.ndcg import RetrievalNormalizedDCG
from torchmetrics.retrieval.precision import RetrievalPrecision
from torchmetrics.retrieval.precision_recall_curve import RetrievalPrecisionRecallCurve, RetrievalRecallAtFixedPrecision
from torchmetrics.retrieval.r_precision import RetrievalRPrecision
from torchmetrics.retrieval.recall import RetrievalRecall
from torchmetrics.retrieval.reciprocal_rank import RetrievalMRR
from torchmetrics.utilities.prints import _deprecated_root_import_class


class _RetrievalFallOut(RetrievalFallOut):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([False, False, True, False, True, False, True])
    >>> rfo = _RetrievalFallOut(top_k=2)
    >>> rfo(preds, target, indexes=indexes)
    tensor(0.5000)

    """

    def __init__(
        self,
        empty_target_action: str = "pos",
        ignore_index: Optional[int] = None,
        top_k: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("RetrievalFallOut", "retrieval")
        super().__init__(empty_target_action=empty_target_action, ignore_index=ignore_index, top_k=top_k, **kwargs)


class _RetrievalHitRate(RetrievalHitRate):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([True, False, False, False, True, False, True])
    >>> hr2 = _RetrievalHitRate(top_k=2)
    >>> hr2(preds, target, indexes=indexes)
    tensor(0.5000)

    """

    def __init__(
        self,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        top_k: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("RetrievalHitRate", "retrieval")
        super().__init__(empty_target_action=empty_target_action, ignore_index=ignore_index, top_k=top_k, **kwargs)


class _RetrievalMAP(RetrievalMAP):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([False, False, True, False, True, False, True])
    >>> rmap = _RetrievalMAP()
    >>> rmap(preds, target, indexes=indexes)
    tensor(0.7917)

    """

    def __init__(
        self,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        top_k: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("RetrievalMAP", "retrieval")
        super().__init__(empty_target_action=empty_target_action, ignore_index=ignore_index, top_k=top_k, **kwargs)


class _RetrievalRecall(RetrievalRecall):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([False, False, True, False, True, False, True])
    >>> r2 = _RetrievalRecall(top_k=2)
    >>> r2(preds, target, indexes=indexes)
    tensor(0.7500)

    """

    def __init__(
        self,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        top_k: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("RetrievalRecall", "retrieval")
        super().__init__(empty_target_action=empty_target_action, ignore_index=ignore_index, top_k=top_k, **kwargs)


class _RetrievalRPrecision(RetrievalRPrecision):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([False, False, True, False, True, False, True])
    >>> p2 = _RetrievalRPrecision()
    >>> p2(preds, target, indexes=indexes)
    tensor(0.7500)

    """

    def __init__(
        self,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("RetrievalRPrecision", "retrieval")
        super().__init__(empty_target_action=empty_target_action, ignore_index=ignore_index, **kwargs)


class _RetrievalNormalizedDCG(RetrievalNormalizedDCG):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([False, False, True, False, True, False, True])
    >>> ndcg = _RetrievalNormalizedDCG()
    >>> ndcg(preds, target, indexes=indexes)
    tensor(0.8467)

    """

    def __init__(
        self,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        top_k: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("RetrievalNormalizedDCG", "retrieval")
        super().__init__(empty_target_action=empty_target_action, ignore_index=ignore_index, top_k=top_k, **kwargs)


class _RetrievalPrecision(RetrievalPrecision):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([False, False, True, False, True, False, True])
    >>> p2 = _RetrievalPrecision(top_k=2)
    >>> p2(preds, target, indexes=indexes)
    tensor(0.5000)

    """

    def __init__(
        self,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        top_k: Optional[int] = None,
        adaptive_k: bool = False,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("", "retrieval")
        super().__init__(
            empty_target_action=empty_target_action,
            ignore_index=ignore_index,
            top_k=top_k,
            adaptive_k=adaptive_k,
            **kwargs,
        )


class _RetrievalPrecisionRecallCurve(RetrievalPrecisionRecallCurve):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 0, 1, 1, 1])
    >>> preds = tensor([0.4, 0.01, 0.5, 0.6, 0.2, 0.3, 0.5])
    >>> target = tensor([True, False, False, True, True, False, True])
    >>> r = _RetrievalPrecisionRecallCurve(max_k=4)
    >>> precisions, recalls, top_k = r(preds, target, indexes=indexes)
    >>> precisions
    tensor([1.0000, 0.5000, 0.6667, 0.5000])
    >>> recalls
    tensor([0.5000, 0.5000, 1.0000, 1.0000])
    >>> top_k
    tensor([1, 2, 3, 4])

    """

    def __init__(
        self,
        max_k: Optional[int] = None,
        adaptive_k: bool = False,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("", "retrieval")
        super().__init__(
            max_k=max_k,
            adaptive_k=adaptive_k,
            empty_target_action=empty_target_action,
            ignore_index=ignore_index,
            **kwargs,
        )


class _RetrievalRecallAtFixedPrecision(RetrievalRecallAtFixedPrecision):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 0, 1, 1, 1])
    >>> preds = tensor([0.4, 0.01, 0.5, 0.6, 0.2, 0.3, 0.5])
    >>> target = tensor([True, False, False, True, True, False, True])
    >>> r = _RetrievalRecallAtFixedPrecision(min_precision=0.8)
    >>> r(preds, target, indexes=indexes)
    (tensor(0.5000), tensor(1))

    """

    def __init__(
        self,
        min_precision: float = 0.0,
        max_k: Optional[int] = None,
        adaptive_k: bool = False,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("RetrievalRecallAtFixedPrecision", "retrieval")
        super().__init__(
            min_precision=min_precision,
            max_k=max_k,
            adaptive_k=adaptive_k,
            empty_target_action=empty_target_action,
            ignore_index=ignore_index,
            **kwargs,
        )


class _RetrievalMRR(RetrievalMRR):
    """Wrapper for deprecated import.

    >>> from torch import tensor
    >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1])
    >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2])
    >>> target = tensor([False, False, True, False, True, False, True])
    >>> mrr = _RetrievalMRR()
    >>> mrr(preds, target, indexes=indexes)
    tensor(0.7500)

    """

    def __init__(
        self,
        empty_target_action: str = "neg",
        ignore_index: Optional[int] = None,
        **kwargs: Any,
    ) -> None:
        _deprecated_root_import_class("", "retrieval")
        super().__init__(empty_target_action=empty_target_action, ignore_index=ignore_index, **kwargs)