File size: 5,919 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union

import torch
from torch import Tensor

from torchmetrics.functional.regression.tweedie_deviance import (
    _tweedie_deviance_score_compute,
    _tweedie_deviance_score_update,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["TweedieDevianceScore.plot"]


class TweedieDevianceScore(Metric):
    r"""Compute the `Tweedie Deviance Score`_.

    .. math::
        deviance\_score(\hat{y},y) =
        \begin{cases}
        (\hat{y} - y)^2, & \text{for }p=0\\
        2 * (y * log(\frac{y}{\hat{y}}) + \hat{y} - y),  & \text{for }p=1\\
        2 * (log(\frac{\hat{y}}{y}) + \frac{y}{\hat{y}} - 1),  & \text{for }p=2\\
        2 * (\frac{(max(y,0))^{2 - p}}{(1 - p)(2 - p)} - \frac{y(\hat{y})^{1 - p}}{1 - p} + \frac{(
            \hat{y})^{2 - p}}{2 - p}), & \text{otherwise}
        \end{cases}

    where :math:`y` is a tensor of targets values, :math:`\hat{y}` is a tensor of predictions, and
    :math:`p` is the `power`.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~torch.Tensor`): Predicted float tensor with shape ``(N,...)``
    - ``target`` (:class:`~torch.Tensor`): Ground truth float tensor with shape ``(N,...)``

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``deviance_score`` (:class:`~torch.Tensor`): A tensor with the deviance score

    Args:
        power:

            - power < 0 : Extreme stable distribution. (Requires: preds > 0.)
            - power = 0 : Normal distribution. (Requires: targets and preds can be any real numbers.)
            - power = 1 : Poisson distribution. (Requires: targets >= 0 and y_pred > 0.)
            - 1 < p < 2 : Compound Poisson distribution. (Requires: targets >= 0 and preds > 0.)
            - power = 2 : Gamma distribution. (Requires: targets > 0 and preds > 0.)
            - power = 3 : Inverse Gaussian distribution. (Requires: targets > 0 and preds > 0.)
            - otherwise : Positive stable distribution. (Requires: targets > 0 and preds > 0.)

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example:
        >>> from torchmetrics.regression import TweedieDevianceScore
        >>> targets = torch.tensor([1.0, 2.0, 3.0, 4.0])
        >>> preds = torch.tensor([4.0, 3.0, 2.0, 1.0])
        >>> deviance_score = TweedieDevianceScore(power=2)
        >>> deviance_score(preds, targets)
        tensor(1.2083)

    """

    is_differentiable: bool = True
    higher_is_better = None
    full_state_update: bool = False
    plot_lower_bound: float = 0.0

    sum_deviance_score: Tensor
    num_observations: Tensor

    def __init__(
        self,
        power: float = 0.0,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        if 0 < power < 1:
            raise ValueError(f"Deviance Score is not defined for power={power}.")

        self.power: float = power

        self.add_state("sum_deviance_score", torch.tensor(0.0), dist_reduce_fx="sum")
        self.add_state("num_observations", torch.tensor(0), dist_reduce_fx="sum")

    def update(self, preds: Tensor, targets: Tensor) -> None:
        """Update metric states with predictions and targets."""
        sum_deviance_score, num_observations = _tweedie_deviance_score_update(preds, targets, self.power)

        self.sum_deviance_score += sum_deviance_score
        self.num_observations += num_observations

    def compute(self) -> Tensor:
        """Compute metric."""
        return _tweedie_deviance_score_compute(self.sum_deviance_score, self.num_observations)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> from torch import randn
            >>> # Example plotting a single value
            >>> from torchmetrics.regression import TweedieDevianceScore
            >>> metric = TweedieDevianceScore()
            >>> metric.update(randn(10,), randn(10,))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> from torch import randn
            >>> # Example plotting multiple values
            >>> from torchmetrics.regression import TweedieDevianceScore
            >>> metric = TweedieDevianceScore()
            >>> values = []
            >>> for _ in range(10):
            ...     values.append(metric(randn(10,), randn(10,)))
            >>> fig, ax = metric.plot(values)

        """
        return self._plot(val, ax)