File size: 5,919 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor
from torchmetrics.functional.regression.tweedie_deviance import (
_tweedie_deviance_score_compute,
_tweedie_deviance_score_update,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["TweedieDevianceScore.plot"]
class TweedieDevianceScore(Metric):
r"""Compute the `Tweedie Deviance Score`_.
.. math::
deviance\_score(\hat{y},y) =
\begin{cases}
(\hat{y} - y)^2, & \text{for }p=0\\
2 * (y * log(\frac{y}{\hat{y}}) + \hat{y} - y), & \text{for }p=1\\
2 * (log(\frac{\hat{y}}{y}) + \frac{y}{\hat{y}} - 1), & \text{for }p=2\\
2 * (\frac{(max(y,0))^{2 - p}}{(1 - p)(2 - p)} - \frac{y(\hat{y})^{1 - p}}{1 - p} + \frac{(
\hat{y})^{2 - p}}{2 - p}), & \text{otherwise}
\end{cases}
where :math:`y` is a tensor of targets values, :math:`\hat{y}` is a tensor of predictions, and
:math:`p` is the `power`.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~torch.Tensor`): Predicted float tensor with shape ``(N,...)``
- ``target`` (:class:`~torch.Tensor`): Ground truth float tensor with shape ``(N,...)``
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``deviance_score`` (:class:`~torch.Tensor`): A tensor with the deviance score
Args:
power:
- power < 0 : Extreme stable distribution. (Requires: preds > 0.)
- power = 0 : Normal distribution. (Requires: targets and preds can be any real numbers.)
- power = 1 : Poisson distribution. (Requires: targets >= 0 and y_pred > 0.)
- 1 < p < 2 : Compound Poisson distribution. (Requires: targets >= 0 and preds > 0.)
- power = 2 : Gamma distribution. (Requires: targets > 0 and preds > 0.)
- power = 3 : Inverse Gaussian distribution. (Requires: targets > 0 and preds > 0.)
- otherwise : Positive stable distribution. (Requires: targets > 0 and preds > 0.)
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torchmetrics.regression import TweedieDevianceScore
>>> targets = torch.tensor([1.0, 2.0, 3.0, 4.0])
>>> preds = torch.tensor([4.0, 3.0, 2.0, 1.0])
>>> deviance_score = TweedieDevianceScore(power=2)
>>> deviance_score(preds, targets)
tensor(1.2083)
"""
is_differentiable: bool = True
higher_is_better = None
full_state_update: bool = False
plot_lower_bound: float = 0.0
sum_deviance_score: Tensor
num_observations: Tensor
def __init__(
self,
power: float = 0.0,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if 0 < power < 1:
raise ValueError(f"Deviance Score is not defined for power={power}.")
self.power: float = power
self.add_state("sum_deviance_score", torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("num_observations", torch.tensor(0), dist_reduce_fx="sum")
def update(self, preds: Tensor, targets: Tensor) -> None:
"""Update metric states with predictions and targets."""
sum_deviance_score, num_observations = _tweedie_deviance_score_update(preds, targets, self.power)
self.sum_deviance_score += sum_deviance_score
self.num_observations += num_observations
def compute(self) -> Tensor:
"""Compute metric."""
return _tweedie_deviance_score_compute(self.sum_deviance_score, self.num_observations)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import randn
>>> # Example plotting a single value
>>> from torchmetrics.regression import TweedieDevianceScore
>>> metric = TweedieDevianceScore()
>>> metric.update(randn(10,), randn(10,))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> from torch import randn
>>> # Example plotting multiple values
>>> from torchmetrics.regression import TweedieDevianceScore
>>> metric = TweedieDevianceScore()
>>> values = []
>>> for _ in range(10):
... values.append(metric(randn(10,), randn(10,)))
>>> fig, ax = metric.plot(values)
"""
return self._plot(val, ax)
|