File size: 5,810 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union

from torch import Tensor

from torchmetrics.functional.regression.spearman import _spearman_corrcoef_compute, _spearman_corrcoef_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["SpearmanCorrCoef.plot"]


class SpearmanCorrCoef(Metric):
    r"""Compute `spearmans rank correlation coefficient`_.

    .. math:
        r_s = = \frac{cov(rg_x, rg_y)}{\sigma_{rg_x} * \sigma_{rg_y}}

    where :math:`rg_x` and :math:`rg_y` are the rank associated to the variables :math:`x` and :math:`y`.
    Spearmans correlations coefficient corresponds to the standard pearsons correlation coefficient calculated
    on the rank variables.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~torch.Tensor`): Predictions from model in float tensor with shape ``(N,d)``
    - ``target`` (:class:`~torch.Tensor`): Ground truth values in float tensor with shape ``(N,d)``

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``spearman`` (:class:`~torch.Tensor`): A tensor with the spearman correlation(s)

    Args:
        num_outputs: Number of outputs in multioutput setting
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example (single output regression):
        >>> from torch import tensor
        >>> from torchmetrics.regression import SpearmanCorrCoef
        >>> target = tensor([3, -0.5, 2, 7])
        >>> preds = tensor([2.5, 0.0, 2, 8])
        >>> spearman = SpearmanCorrCoef()
        >>> spearman(preds, target)
        tensor(1.0000)

    Example (multi output regression):
        >>> from torchmetrics.regression import SpearmanCorrCoef
        >>> target = tensor([[3, -0.5], [2, 7]])
        >>> preds = tensor([[2.5, 0.0], [2, 8]])
        >>> spearman = SpearmanCorrCoef(num_outputs=2)
        >>> spearman(preds, target)
        tensor([1.0000, 1.0000])

    """

    is_differentiable: bool = False
    higher_is_better: bool = True
    full_state_update: bool = False
    plot_lower_bound: float = -1.0
    plot_upper_bound: float = 1.0

    preds: List[Tensor]
    target: List[Tensor]

    def __init__(
        self,
        num_outputs: int = 1,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        rank_zero_warn(
            "Metric `SpearmanCorrcoef` will save all targets and predictions in the buffer."
            " For large datasets, this may lead to large memory footprint."
        )
        if not isinstance(num_outputs, int) and num_outputs < 1:
            raise ValueError(f"Expected argument `num_outputs` to be an int larger than 0, but got {num_outputs}")
        self.num_outputs = num_outputs

        self.add_state("preds", default=[], dist_reduce_fx="cat")
        self.add_state("target", default=[], dist_reduce_fx="cat")

    def update(self, preds: Tensor, target: Tensor) -> None:
        """Update state with predictions and targets."""
        preds, target = _spearman_corrcoef_update(preds, target, num_outputs=self.num_outputs)
        self.preds.append(preds.to(self.dtype))
        self.target.append(target.to(self.dtype))

    def compute(self) -> Tensor:
        """Compute Spearman's correlation coefficient."""
        preds = dim_zero_cat(self.preds)
        target = dim_zero_cat(self.target)
        return _spearman_corrcoef_compute(preds, target)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> from torch import randn
            >>> # Example plotting a single value
            >>> from torchmetrics.regression import SpearmanCorrCoef
            >>> metric = SpearmanCorrCoef()
            >>> metric.update(randn(10,), randn(10,))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> from torch import randn
            >>> # Example plotting multiple values
            >>> from torchmetrics.regression import SpearmanCorrCoef
            >>> metric = SpearmanCorrCoef()
            >>> values = []
            >>> for _ in range(10):
            ...     values.append(metric(randn(10,), randn(10,)))
            >>> fig, ax = metric.plot(values)

        """
        return self._plot(val, ax)