File size: 5,609 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union

import torch
from torch import Tensor, tensor

from torchmetrics.functional.regression.mse import _mean_squared_error_compute, _mean_squared_error_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["MeanSquaredError.plot"]


class MeanSquaredError(Metric):
    r"""Compute `mean squared error`_ (MSE).

    .. math:: \text{MSE} = \frac{1}{N}\sum_i^N(y_i - \hat{y_i})^2

    Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~torch.Tensor`): Predictions from model
    - ``target`` (:class:`~torch.Tensor`): Ground truth values

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``mean_squared_error`` (:class:`~torch.Tensor`): A tensor with the mean squared error

    Args:
        squared: If True returns MSE value, if False returns RMSE value.
        num_outputs: Number of outputs in multioutput setting
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example::
        Single output mse computation:

        >>> from torch import tensor
        >>> from torchmetrics.regression import MeanSquaredError
        >>> target = tensor([2.5, 5.0, 4.0, 8.0])
        >>> preds = tensor([3.0, 5.0, 2.5, 7.0])
        >>> mean_squared_error = MeanSquaredError()
        >>> mean_squared_error(preds, target)
        tensor(0.8750)

    Example::
        Multioutput mse computation:

        >>> from torch import tensor
        >>> from torchmetrics.regression import MeanSquaredError
        >>> target = tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
        >>> preds = tensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]])
        >>> mean_squared_error = MeanSquaredError(num_outputs=3)
        >>> mean_squared_error(preds, target)
        tensor([1., 4., 9.])

    """

    is_differentiable = True
    higher_is_better = False
    full_state_update = False
    plot_lower_bound: float = 0.0

    sum_squared_error: Tensor
    total: Tensor

    def __init__(
        self,
        squared: bool = True,
        num_outputs: int = 1,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)

        if not isinstance(squared, bool):
            raise ValueError(f"Expected argument `squared` to be a boolean but got {squared}")
        self.squared = squared

        if not (isinstance(num_outputs, int) and num_outputs > 0):
            raise ValueError(f"Expected num_outputs to be a positive integer but got {num_outputs}")
        self.num_outputs = num_outputs

        self.add_state("sum_squared_error", default=torch.zeros(num_outputs), dist_reduce_fx="sum")
        self.add_state("total", default=tensor(0), dist_reduce_fx="sum")

    def update(self, preds: Tensor, target: Tensor) -> None:
        """Update state with predictions and targets."""
        sum_squared_error, num_obs = _mean_squared_error_update(preds, target, num_outputs=self.num_outputs)

        self.sum_squared_error += sum_squared_error
        self.total += num_obs

    def compute(self) -> Tensor:
        """Compute mean squared error over state."""
        return _mean_squared_error_compute(self.sum_squared_error, self.total, squared=self.squared)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> from torch import randn
            >>> # Example plotting a single value
            >>> from torchmetrics.regression import MeanSquaredError
            >>> metric = MeanSquaredError()
            >>> metric.update(randn(10,), randn(10,))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> from torch import randn
            >>> # Example plotting multiple values
            >>> from torchmetrics.regression import MeanSquaredError
            >>> metric = MeanSquaredError()
            >>> values = []
            >>> for _ in range(10):
            ...     values.append(metric(randn(10,), randn(10,)))
            >>> fig, ax = metric.plot(values)

        """
        return self._plot(val, ax)