File size: 6,567 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union

import torch
from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.nominal.pearson import (
    _pearsons_contingency_coefficient_compute,
    _pearsons_contingency_coefficient_update,
)
from torchmetrics.functional.nominal.utils import _nominal_input_validation
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["PearsonsContingencyCoefficient.plot"]


class PearsonsContingencyCoefficient(Metric):
    r"""Compute `Pearson's Contingency Coefficient`_ statistic.

    This metric measures the association between two categorical (nominal) data series.

    .. math::
        Pearson = \sqrt{\frac{\chi^2 / n}{1 + \chi^2 / n}}

    where

    .. math::
        \chi^2 = \sum_{i,j} \ frac{\left(n_{ij} - \frac{n_{i.} n_{.j}}{n}\right)^2}{\frac{n_{i.} n_{.j}}{n}}

    where :math:`n_{ij}` denotes the number of times the values :math:`(A_i, B_j)` are observed with :math:`A_i, B_j`
    represent frequencies of values in ``preds`` and ``target``, respectively. Pearson's Contingency Coefficient is a
    symmetric coefficient, i.e. :math:`Pearson(preds, target) = Pearson(target, preds)`, so order of input arguments
    does not matter. The output values lies in [0, 1] with 1 meaning the perfect association.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~torch.Tensor`): Either 1D or 2D tensor of categorical (nominal) data from the first data
      series with shape ``(batch_size,)`` or ``(batch_size, num_classes)``, respectively.
    - ``target`` (:class:`~torch.Tensor`): Either 1D or 2D tensor of categorical (nominal) data from the second data
      series with shape ``(batch_size,)`` or ``(batch_size, num_classes)``, respectively.

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``pearsons_cc`` (:class:`~torch.Tensor`): Scalar tensor containing the Pearsons Contingency Coefficient statistic.

    Args:
        num_classes: Integer specifying the number of classes
        nan_strategy: Indication of whether to replace or drop ``NaN`` values
        nan_replace_value: Value to replace ``NaN``s when ``nan_strategy = 'replace'``
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ValueError:
            If `nan_strategy` is not one of `'replace'` and `'drop'`
        ValueError:
            If `nan_strategy` is equal to `'replace'` and `nan_replace_value` is not an `int` or `float`

    Example::

        >>> from torch import randint, randn
        >>> from torchmetrics.nominal import PearsonsContingencyCoefficient
        >>> preds = randint(0, 4, (100,))
        >>> target = (preds + randn(100)).round().clamp(0, 4)
        >>> pearsons_contingency_coefficient = PearsonsContingencyCoefficient(num_classes=5)
        >>> pearsons_contingency_coefficient(preds, target)
        tensor(0.6948)

    """

    full_state_update: bool = False
    is_differentiable: bool = False
    higher_is_better: bool = True
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0
    confmat: Tensor

    def __init__(
        self,
        num_classes: int,
        nan_strategy: Literal["replace", "drop"] = "replace",
        nan_replace_value: Optional[float] = 0.0,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        self.num_classes = num_classes

        _nominal_input_validation(nan_strategy, nan_replace_value)
        self.nan_strategy = nan_strategy
        self.nan_replace_value = nan_replace_value

        self.add_state("confmat", torch.zeros(num_classes, num_classes), dist_reduce_fx="sum")

    def update(self, preds: Tensor, target: Tensor) -> None:
        """Update state with predictions and targets."""
        confmat = _pearsons_contingency_coefficient_update(
            preds, target, self.num_classes, self.nan_strategy, self.nan_replace_value
        )
        self.confmat += confmat

    def compute(self) -> Tensor:
        """Compute Pearson's Contingency Coefficient statistic."""
        return _pearsons_contingency_coefficient_compute(self.confmat)

    def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.nominal import PearsonsContingencyCoefficient
            >>> metric = PearsonsContingencyCoefficient(num_classes=5)
            >>> metric.update(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,)))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.nominal import PearsonsContingencyCoefficient
            >>> metric = PearsonsContingencyCoefficient(num_classes=5)
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(torch.randint(0, 4, (100,)), torch.randint(0, 4, (100,))))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)