File size: 56,961 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# It is needed to distinguish between native float and Metric's' function called float.
# later, this function was used instead of the built-in float type...
import builtins
import functools
import inspect
from abc import ABC, abstractmethod
from collections.abc import Generator, Sequence
from contextlib import contextmanager
from copy import deepcopy
from typing import Any, Callable, ClassVar, List, Optional, Union
import torch
from lightning_utilities import apply_to_collection
from torch import Tensor
from torch.nn import Module
from torchmetrics.utilities.data import (
_flatten,
_squeeze_if_scalar,
dim_zero_cat,
dim_zero_max,
dim_zero_mean,
dim_zero_min,
dim_zero_sum,
)
from torchmetrics.utilities.distributed import gather_all_tensors
from torchmetrics.utilities.exceptions import TorchMetricsUserError
from torchmetrics.utilities.imports import _TORCH_GREATER_EQUAL_2_1
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE, plot_single_or_multi_val
from torchmetrics.utilities.prints import rank_zero_warn
def jit_distributed_available() -> bool:
"""Determine if distributed mode is initialized."""
return torch.distributed.is_available() and torch.distributed.is_initialized()
class Metric(Module, ABC):
"""Base class for all metrics present in the Metrics API.
This class is inherited by all metrics and implements the following functionality:
1. Handles the transfer of metric states to the correct device.
2. Handles the synchronization of metric states across processes.
3. Provides properties and methods to control the overall behavior of the metric and its states.
The three core methods of the base class are: ``add_state()``, ``forward()`` and ``reset()`` which should almost
never be overwritten by child classes. Instead, the following methods should be overwritten ``update()`` and
``compute()``.
Args:
kwargs: additional keyword arguments, see :ref:`Metric kwargs` for more info.
- **compute_on_cpu**:
If metric state should be stored on CPU during computations. Only works for list states.
- **dist_sync_on_step**:
If metric state should synchronize on ``forward()``. Default is ``False``.
- **process_group**:
The process group on which the synchronization is called. Default is the world.
- **dist_sync_fn**:
Function that performs the allgather option on the metric state. Default is a custom
implementation that calls ``torch.distributed.all_gather`` internally.
- **distributed_available_fn**:
Function that checks if the distributed backend is available. Defaults to a
check of ``torch.distributed.is_available()`` and ``torch.distributed.is_initialized()``.
- **sync_on_compute**:
If metric state should synchronize when ``compute`` is called. Default is ``True``.
- **compute_with_cache**:
If results from ``compute`` should be cached. Default is ``True``.
"""
__jit_ignored_attributes__: ClassVar[list[str]] = ["device"]
__jit_unused_properties__: ClassVar[list[str]] = [
"is_differentiable",
"higher_is_better",
"plot_lower_bound",
"plot_upper_bound",
"plot_legend_name",
"metric_state",
"_update_called",
]
is_differentiable: Optional[bool] = None
higher_is_better: Optional[bool] = None
full_state_update: Optional[bool] = None
plot_lower_bound: Optional[float] = None
plot_upper_bound: Optional[float] = None
plot_legend_name: Optional[str] = None
def __init__(
self,
**kwargs: Any,
) -> None:
super().__init__()
# see (https://github.com/pytorch/pytorch/blob/3e6bb5233f9ca2c5aa55d9cda22a7ee85439aa6e/
# torch/nn/modules/module.py#L227)
torch._C._log_api_usage_once(f"torchmetrics.metric.{self.__class__.__name__}")
# magic patch for `RuntimeError: DataLoader worker (pid(s) 104) exited unexpectedly`
self._TORCH_GREATER_EQUAL_2_1 = bool(_TORCH_GREATER_EQUAL_2_1)
self._device = torch.device("cpu")
self._dtype = torch.get_default_dtype()
self.compute_on_cpu = kwargs.pop("compute_on_cpu", False)
if not isinstance(self.compute_on_cpu, bool):
raise ValueError(
f"Expected keyword argument `compute_on_cpu` to be an `bool` but got {self.compute_on_cpu}"
)
self.dist_sync_on_step = kwargs.pop("dist_sync_on_step", False)
if not isinstance(self.dist_sync_on_step, bool):
raise ValueError(
f"Expected keyword argument `dist_sync_on_step` to be an `bool` but got {self.dist_sync_on_step}"
)
self.process_group = kwargs.pop("process_group", None)
self.dist_sync_fn = kwargs.pop("dist_sync_fn", None)
if self.dist_sync_fn is not None and not callable(self.dist_sync_fn):
raise ValueError(
f"Expected keyword argument `dist_sync_fn` to be an callable function but got {self.dist_sync_fn}"
)
self.distributed_available_fn = kwargs.pop("distributed_available_fn", None) or jit_distributed_available
self.sync_on_compute = kwargs.pop("sync_on_compute", True)
if not isinstance(self.sync_on_compute, bool):
raise ValueError(
f"Expected keyword argument `sync_on_compute` to be a `bool` but got {self.sync_on_compute}"
)
self.compute_with_cache = kwargs.pop("compute_with_cache", True)
if not isinstance(self.compute_with_cache, bool):
raise ValueError(
f"Expected keyword argument `compute_with_cache` to be a `bool` but got {self.compute_with_cache}"
)
if kwargs:
kwargs_ = [f"`{a}`" for a in sorted(kwargs)]
raise ValueError(f"Unexpected keyword arguments: {', '.join(kwargs_)}")
# initialize
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore[method-assign]
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore[method-assign]
self._computed = None
self._forward_cache = None
self._update_count = 0
self._to_sync = self.sync_on_compute
self._should_unsync = True
self._enable_grad = False
self._dtype_convert = False
# initialize state
self._defaults: dict[str, Union[list, Tensor]] = {}
self._persistent: dict[str, bool] = {}
self._reductions: dict[str, Union[str, Callable[..., Any], None]] = {}
# state management
self._is_synced = False
self._cache: Optional[dict[str, Union[List[Tensor], Tensor]]] = None
@property
def _update_called(self) -> bool:
rank_zero_warn(
"This property will be removed in 2.0.0. Use `Metric.updated_called` instead.",
DeprecationWarning,
stacklevel=2,
)
return self.update_called
@property
def update_called(self) -> bool:
"""Returns `True` if `update` or `forward` has been called initialization or last `reset`."""
return self._update_count > 0
@property
def update_count(self) -> int:
"""Get the number of times `update` and/or `forward` has been called since initialization or last `reset`."""
return self._update_count
@property
def metric_state(self) -> dict[str, Union[List[Tensor], Tensor]]:
"""Get the current state of the metric."""
return {attr: getattr(self, attr) for attr in self._defaults}
def add_state(
self,
name: str,
default: Union[list, Tensor],
dist_reduce_fx: Optional[Union[str, Callable]] = None,
persistent: bool = False,
) -> None:
"""Add metric state variable. Only used by subclasses.
Metric state variables are either `:class:`~torch.Tensor` or an empty list, which can be appended to by the
metric. Each state variable must have a unique name associated with it. State variables are accessible as
attributes of the metric i.e, if ``name`` is ``"my_state"`` then its value can be accessed from an instance
``metric`` as ``metric.my_state``. Metric states behave like buffers and parameters of :class:`~torch.nn.Module`
as they are also updated when ``.to()`` is called. Unlike parameters and buffers, metric states are not by
default saved in the modules :attr:`~torch.nn.Module.state_dict`.
Args:
name: The name of the state variable. The variable will then be accessible at ``self.name``.
default: Default value of the state; can either be a :class:`~torch.Tensor` or an empty list.
The state will be reset to this value when ``self.reset()`` is called.
dist_reduce_fx (Optional): Function to reduce state across multiple processes in distributed mode.
If value is ``"sum"``, ``"mean"``, ``"cat"``, ``"min"`` or ``"max"`` we will use ``torch.sum``,
``torch.mean``, ``torch.cat``, ``torch.min`` and ``torch.max``` respectively, each with argument
``dim=0``. Note that the ``"cat"`` reduction only makes sense if the state is a list, and not
a tensor. The user can also pass a custom function in this parameter.
persistent (Optional): whether the state will be saved as part of the modules ``state_dict``.
Default is ``False``.
.. note::
Setting ``dist_reduce_fx`` to None will return the metric state synchronized across different processes.
However, there won't be any reduction function applied to the synchronized metric state.
The metric states would be synced as follows
- If the metric state is :class:`~torch.Tensor`, the synced value will be a stacked :class:`~torch.Tensor`
across the process dimension if the metric state was a :class:`~torch.Tensor`. The original
:class:`~torch.Tensor` metric state retains dimension and hence the synchronized output will be of shape
``(num_process, ...)``.
- If the metric state is a ``list``, the synced value will be a ``list`` containing the
combined elements from all processes.
.. important::
When passing a custom function to ``dist_reduce_fx``, expect the synchronized metric state to follow
the format discussed in the above note.
.. caution::
The values inserted into a list state are deleted whenever :meth:`~Metric.reset` is called. This allows
device memory to be automatically reallocated, but may produce unexpected effects when referencing list
states. To retain such values after :meth:`~Metric.reset` is called, you must first copy them to another
object.
Raises:
ValueError:
If ``default`` is not a ``tensor`` or an ``empty list``.
ValueError:
If ``dist_reduce_fx`` is not callable or one of ``"mean"``, ``"sum"``, ``"cat"``, ``"min"``,
``"max"`` or ``None``.
"""
if not isinstance(default, (Tensor, list)) or (isinstance(default, list) and default):
raise ValueError("state variable must be a tensor or any empty list (where you can append tensors)")
if dist_reduce_fx == "sum":
dist_reduce_fx = dim_zero_sum
elif dist_reduce_fx == "mean":
dist_reduce_fx = dim_zero_mean
elif dist_reduce_fx == "max":
dist_reduce_fx = dim_zero_max
elif dist_reduce_fx == "min":
dist_reduce_fx = dim_zero_min
elif dist_reduce_fx == "cat":
dist_reduce_fx = dim_zero_cat
elif dist_reduce_fx is not None and not callable(dist_reduce_fx):
raise ValueError("`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', 'min', 'max', None]")
if isinstance(default, Tensor):
default = default.contiguous()
setattr(self, name, default)
self._defaults[name] = deepcopy(default)
self._persistent[name] = persistent
self._reductions[name] = dist_reduce_fx
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Aggregate and evaluate batch input directly.
Serves the dual purpose of both computing the metric on the current batch of inputs but also add the batch
statistics to the overall accumulating metric state. Input arguments are the exact same as corresponding
``update`` method. The returned output is the exact same as the output of ``compute``.
Args:
args: Any arguments as required by the metric ``update`` method.
kwargs: Any keyword arguments as required by the metric ``update`` method.
Returns:
The output of the ``compute`` method evaluated on the current batch.
Raises:
TorchMetricsUserError:
If the metric is already synced and ``forward`` is called again.
"""
# check if states are already synced
if self._is_synced:
raise TorchMetricsUserError(
"The Metric shouldn't be synced when performing ``forward``. HINT: Did you forget to call ``unsync`` ?."
)
if self.full_state_update or self.full_state_update is None or self.dist_sync_on_step:
self._forward_cache = self._forward_full_state_update(*args, **kwargs)
else:
self._forward_cache = self._forward_reduce_state_update(*args, **kwargs)
return self._forward_cache
def _forward_full_state_update(self, *args: Any, **kwargs: Any) -> Any:
"""Forward computation using two calls to `update`.
Doing this secures that metrics that need access to the full metric state during `update` works as expected.
This is the most safe method to use for any metric but also the slower version of the two forward
implementations.
"""
# global accumulation
self.update(*args, **kwargs)
_update_count = self._update_count
self._to_sync = self.dist_sync_on_step
# skip restore cache operation from compute as cache is stored below.
self._should_unsync = False
# skip computing on cpu for the batch
_temp_compute_on_cpu = self.compute_on_cpu
self.compute_on_cpu = False
# save context before switch
cache = self._copy_state_dict()
# call reset, update, compute, on single batch
self._enable_grad = True # allow grads for batch computation
self.reset()
self.update(*args, **kwargs)
batch_val = self.compute()
# restore context
for attr, val in cache.items():
setattr(self, attr, val)
self._update_count = _update_count
# restore context
self._is_synced = False
self._should_unsync = True
self._to_sync = self.sync_on_compute
self._computed = None
self._enable_grad = False
self.compute_on_cpu = _temp_compute_on_cpu
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return batch_val
def _forward_reduce_state_update(self, *args: Any, **kwargs: Any) -> Any:
"""Forward computation using single call to `update`.
This can be done when the global metric state is a simple reduction of batch states. This can be unsafe for
certain metric cases but is also the fastest way to both accumulate globally and compute locally.
"""
# store global state and reset to default
global_state = self._copy_state_dict()
_update_count = self._update_count
self.reset()
# local synchronization settings
self._to_sync = self.dist_sync_on_step
self._should_unsync = False
_temp_compute_on_cpu = self.compute_on_cpu
self.compute_on_cpu = False
self._enable_grad = True # allow grads for batch computation
# calculate batch state and compute batch value
self.update(*args, **kwargs)
batch_val = self.compute()
# reduce batch and global state
self._update_count = _update_count + 1
with torch.no_grad():
self._reduce_states(global_state)
# restore context
self._is_synced = False
self._should_unsync = True
self._to_sync = self.sync_on_compute
self._computed = None
self._enable_grad = False
self.compute_on_cpu = _temp_compute_on_cpu
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return batch_val
def merge_state(self, incoming_state: Union[dict[str, Any], "Metric"]) -> None:
"""Merge incoming metric state to the current state of the metric.
Args:
incoming_state:
either a dict containing a metric state similar to the metric itself or an instance of the
metric class.
Raises:
ValueError:
If the incoming state is neither a dict nor an instance of the metric class.
RuntimeError:
If the metric has ``full_state_update=True`` or ``dist_sync_on_step=True``. In these cases, the metric
cannot be merged with another metric state in a simple way. The user should overwrite the method in the
metric class to handle the merge operation.
ValueError:
If the incoming state is a metric instance but the class is different from the current metric class.
Example with a metric instance:
>>> from torchmetrics.aggregation import SumMetric
>>> metric1 = SumMetric()
>>> metric2 = SumMetric()
>>> metric1.update(1)
>>> metric2.update(2)
>>> metric1.merge_state(metric2)
>>> metric1.compute()
tensor(3.)
Example with a dict:
>>> from torchmetrics.aggregation import SumMetric
>>> metric = SumMetric()
>>> metric.update(1)
>>> # SumMetric has one state variable called `sum_value`
>>> metric.merge_state({"sum_value": torch.tensor(2)})
>>> metric.compute()
tensor(3.)
"""
if not isinstance(incoming_state, (dict, Metric)):
raise ValueError(
f"Expected incoming state to be a dict or an instance of Metric but got {type(incoming_state)}"
)
if self.full_state_update or self.full_state_update is None or self.dist_sync_on_step:
raise RuntimeError(
"``merge_state`` is not supported for metrics with ``full_state_update=True`` or "
"``dist_sync_on_step=True``. Please overwrite the merge_state method in the metric class."
)
if isinstance(incoming_state, Metric):
this_class = self.__class__
if not isinstance(incoming_state, this_class):
raise ValueError(
f"Expected incoming state to be an instance of {this_class.__name__} but got {type(incoming_state)}"
)
incoming_state = incoming_state.metric_state
self._reduce_states(incoming_state)
def _reduce_states(self, incoming_state: dict[str, Any]) -> None:
"""Add an incoming metric state to the current state of the metric.
Args:
incoming_state: a dict containing a metric state similar metric itself
"""
for attr in self._defaults:
local_state = getattr(self, attr)
if attr not in incoming_state:
raise ValueError(f"Expected state variable {attr} to be present in incoming state {incoming_state}")
global_state = incoming_state[attr]
reduce_fn = self._reductions[attr]
if reduce_fn == dim_zero_sum:
reduced = global_state + local_state
elif reduce_fn == dim_zero_mean:
reduced = ((self._update_count - 1) * global_state + local_state).float() / self._update_count
elif reduce_fn == dim_zero_max:
reduced = torch.max(global_state, local_state)
elif reduce_fn == dim_zero_min:
reduced = torch.min(global_state, local_state)
elif reduce_fn == dim_zero_cat:
if isinstance(global_state, Tensor):
reduced = torch.cat([global_state, local_state])
else:
reduced = global_state + local_state
elif reduce_fn is None and isinstance(global_state, Tensor):
reduced = torch.stack([global_state, local_state])
elif reduce_fn is None and isinstance(global_state, list):
reduced = _flatten([global_state, local_state])
elif reduce_fn and callable(reduce_fn):
reduced = reduce_fn(torch.stack([global_state, local_state]))
else:
raise TypeError(f"Unsupported reduce_fn: {reduce_fn}")
setattr(self, attr, reduced)
def _sync_dist(self, dist_sync_fn: Callable = gather_all_tensors, process_group: Optional[Any] = None) -> None:
input_dict = {attr: getattr(self, attr) for attr in self._reductions}
for attr, reduction_fn in self._reductions.items():
# pre-concatenate metric states that are lists to reduce number of all_gather operations
if reduction_fn == dim_zero_cat and isinstance(input_dict[attr], list) and len(input_dict[attr]) > 1:
input_dict[attr] = [dim_zero_cat(input_dict[attr])]
# cornor case in distributed settings where a rank have not received any data, create empty to concatenate
if (
self._TORCH_GREATER_EQUAL_2_1
and reduction_fn == dim_zero_cat
and isinstance(input_dict[attr], list)
and len(input_dict[attr]) == 0
):
input_dict[attr] = [torch.tensor([], device=self.device, dtype=self.dtype)]
output_dict = apply_to_collection(
input_dict,
Tensor,
dist_sync_fn,
group=process_group or self.process_group,
)
for attr, reduction_fn in self._reductions.items():
# pre-processing ops (stack or flatten for inputs)
if isinstance(output_dict[attr], list) and len(output_dict[attr]) == 0:
setattr(self, attr, [])
continue
if isinstance(output_dict[attr][0], Tensor):
output_dict[attr] = torch.stack(output_dict[attr])
elif isinstance(output_dict[attr][0], list):
output_dict[attr] = _flatten(output_dict[attr])
if not (callable(reduction_fn) or reduction_fn is None):
raise TypeError("reduction_fn must be callable or None")
reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr]
setattr(self, attr, reduced)
def _wrap_update(self, update: Callable) -> Callable:
@functools.wraps(update)
def wrapped_func(*args: Any, **kwargs: Any) -> None:
self._computed = None
self._update_count += 1
with torch.set_grad_enabled(self._enable_grad):
try:
update(*args, **kwargs)
except RuntimeError as err:
if "Expected all tensors to be on" in str(err):
raise RuntimeError(
"Encountered different devices in metric calculation (see stacktrace for details)."
" This could be due to the metric class not being on the same device as input."
f" Instead of `metric={self.__class__.__name__}(...)` try to do"
f" `metric={self.__class__.__name__}(...).to(device)` where"
" device corresponds to the device of the input."
) from err
raise err
if self.compute_on_cpu:
self._move_list_states_to_cpu()
return wrapped_func
def _move_list_states_to_cpu(self) -> None:
"""Move list states to cpu to save GPU memory."""
for key in self._defaults:
current_val = getattr(self, key)
if isinstance(current_val, Sequence):
setattr(self, key, [cur_v.to("cpu") for cur_v in current_val])
def sync(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
distributed_available: Optional[Callable] = None,
) -> None:
"""Sync function for manually controlling when metrics states should be synced across processes.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: `None` (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
distributed_available: Function to determine if we are running inside a distributed setting
Raises:
TorchMetricsUserError:
If the metric is already synced and ``sync`` is called again.
"""
if self._is_synced and should_sync:
raise TorchMetricsUserError("The Metric has already been synced.")
if distributed_available is None and self.distributed_available_fn is not None:
distributed_available = self.distributed_available_fn
is_distributed = distributed_available() if callable(distributed_available) else None
if not should_sync or not is_distributed:
return
if dist_sync_fn is None:
dist_sync_fn = gather_all_tensors
# cache prior to syncing
self._cache = self._copy_state_dict()
# sync
self._sync_dist(dist_sync_fn, process_group=process_group)
self._is_synced = True
def unsync(self, should_unsync: bool = True) -> None:
"""Unsync function for manually controlling when metrics states should be reverted back to their local states.
Args:
should_unsync: Whether to perform unsync
"""
if not should_unsync:
return
if not self._is_synced:
raise TorchMetricsUserError("The Metric has already been un-synced.")
if self._cache is None:
raise TorchMetricsUserError("The internal cache should exist to unsync the Metric.")
# if we synced, restore to cache so that we can continue to accumulate un-synced state
for attr, val in self._cache.items():
setattr(self, attr, val)
self._is_synced = False
self._cache = None
@contextmanager
def sync_context(
self,
dist_sync_fn: Optional[Callable] = None,
process_group: Optional[Any] = None,
should_sync: bool = True,
should_unsync: bool = True,
distributed_available: Optional[Callable] = None,
) -> Generator:
"""Context manager to synchronize states.
This context manager is used in distributed setting and makes sure that the local cache states are restored
after yielding the synchronized state.
Args:
dist_sync_fn: Function to be used to perform states synchronization
process_group:
Specify the process group on which synchronization is called.
default: `None` (which selects the entire world)
should_sync: Whether to apply to state synchronization. This will have an impact
only when running in a distributed setting.
should_unsync: Whether to restore the cache state so that the metrics can
continue to be accumulated.
distributed_available: Function to determine if we are running inside a distributed setting
"""
self.sync(
dist_sync_fn=dist_sync_fn,
process_group=process_group,
should_sync=should_sync,
distributed_available=distributed_available,
)
yield
self.unsync(should_unsync=self._is_synced and should_unsync)
def _wrap_compute(self, compute: Callable) -> Callable:
@functools.wraps(compute)
def wrapped_func(*args: Any, **kwargs: Any) -> Any:
if not self.update_called:
rank_zero_warn(
f"The ``compute`` method of metric {self.__class__.__name__}"
" was called before the ``update`` method which may lead to errors,"
" as metric states have not yet been updated.",
UserWarning,
)
# return cached value
if self._computed is not None:
return self._computed
# compute relies on the sync context manager to gather the states across processes and apply reduction
# if synchronization happened, the current rank accumulated states will be restored to keep
# accumulation going if ``should_unsync=True``,
with self.sync_context(
dist_sync_fn=self.dist_sync_fn,
should_sync=self._to_sync,
should_unsync=self._should_unsync,
):
value = _squeeze_if_scalar(compute(*args, **kwargs))
# clone tensor to avoid in-place operations after compute, altering already computed results
value = apply_to_collection(value, Tensor, lambda x: x.clone())
if self.compute_with_cache:
self._computed = value
return value
return wrapped_func
@abstractmethod
def update(self, *_: Any, **__: Any) -> None:
"""Override this method to update the state variables of your metric class."""
@abstractmethod
def compute(self) -> Any:
"""Override this method to compute the final metric value.
This method will automatically synchronize state variables when running in distributed backend.
"""
def plot(self, *_: Any, **__: Any) -> Any:
"""Override this method plot the metric value."""
raise NotImplementedError
def _plot(
self,
val: Optional[Union[Tensor, Sequence[Tensor], dict[str, Tensor], Sequence[dict[str, Tensor]]]] = None,
ax: Optional[_AX_TYPE] = None,
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
"""
val = val if val is not None else self.compute()
fig, ax = plot_single_or_multi_val(
val,
ax=ax,
higher_is_better=self.higher_is_better,
name=self.__class__.__name__,
lower_bound=self.plot_lower_bound,
upper_bound=self.plot_upper_bound,
legend_name=self.plot_legend_name,
)
return fig, ax
def reset(self) -> None:
"""Reset metric state variables to their default value."""
self._update_count = 0
self._forward_cache = None
self._computed = None
for attr, default in self._defaults.items():
current_val = getattr(self, attr)
if isinstance(default, Tensor):
setattr(self, attr, default.detach().clone().to(current_val.device))
else:
getattr(self, attr).clear() # delete/free list items
# reset internal states
self._cache = None
self._is_synced = False
def clone(self) -> "Metric":
"""Make a copy of the metric."""
return deepcopy(self)
def __getstate__(self) -> dict[str, Any]:
"""Get the current state, including all metric states, for the metric.
Used for loading and saving a metric.
"""
# ignore update and compute functions for pickling
return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute", "_update_signature"]}
def __setstate__(self, state: dict[str, Any]) -> None:
"""Set the state of the metric, based on a input state.
Used for loading and saving a metric.
"""
# manually restore update and compute functions for pickling
self.__dict__.update(state)
self._update_signature = inspect.signature(self.update)
self.update: Callable = self._wrap_update(self.update) # type: ignore[method-assign]
self.compute: Callable = self._wrap_compute(self.compute) # type: ignore[method-assign]
def __setattr__(self, name: str, value: Any) -> None:
"""Overwrite default method to prevent specific attributes from being set by user."""
if name in (
"higher_is_better",
"is_differentiable",
"full_state_update",
"plot_lower_bound",
"plot_upper_bound",
"plot_legend_name",
):
raise RuntimeError(f"Can't change const `{name}`.")
super().__setattr__(name, value)
@property
def device(self) -> "torch.device":
"""Return the device of the metric."""
return self._device
@property
def dtype(self) -> "torch.dtype":
"""Return the default dtype of the metric."""
return self._dtype
def type(self, dst_type: Union[str, torch.dtype]) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def float(self) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def double(self) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def half(self) -> "Metric":
"""Override default and prevent dtype casting.
Please use :meth:`Metric.set_dtype` instead.
"""
return self
def set_dtype(self, dst_type: Union[str, torch.dtype]) -> "Metric":
"""Transfer all metric state to specific dtype. Special version of standard `type` method.
Arguments:
dst_type: the desired type as string or dtype object
"""
self._dtype_convert = True
out = super().type(dst_type)
out._dtype_convert = False
return out
def _apply(self, fn: Callable, exclude_state: Sequence[str] = "") -> Module:
"""Overwrite `_apply` function such that we can also move metric states to the correct device.
This method is called by the base ``nn.Module`` class whenever `.to`, `.cuda`, `.float`, `.half` etc. methods
are called. Dtype conversion is guarded and will only happen through the special `set_dtype` method.
Args:
fn: the function to apply
exclude_state: list of state variables to exclude from applying the function, that then needs to be handled
by the metric class itself.
"""
this = super()._apply(fn)
fs = str(fn)
cond = any(f in fs for f in ["Module.type", "Module.half", "Module.float", "Module.double", "Module.bfloat16"])
if not self._dtype_convert and cond:
return this
# Also apply fn to metric states and defaults
for key, value in this._defaults.items():
if key in exclude_state:
continue
if isinstance(value, Tensor):
this._defaults[key] = fn(value)
elif isinstance(value, Sequence):
this._defaults[key] = [fn(v) for v in value]
current_val = getattr(this, key)
if isinstance(current_val, Tensor):
setattr(this, key, fn(current_val))
elif isinstance(current_val, Sequence):
setattr(this, key, [fn(cur_v) for cur_v in current_val])
else:
raise TypeError(
f"Expected metric state to be either a Tensor or a list of Tensor, but encountered {current_val}"
)
# make sure to update the device attribute
# if the dummy tensor moves device by fn function we should also update the attribute
_dummy_tensor = fn(torch.zeros(1, device=self.device))
self._device = _dummy_tensor.device
self._dtype = _dummy_tensor.dtype
# Additional apply to forward cache and computed attributes (may be nested)
if this._computed is not None:
this._computed = apply_to_collection(this._computed, Tensor, fn)
if this._forward_cache is not None:
this._forward_cache = apply_to_collection(this._forward_cache, Tensor, fn)
return this
def persistent(self, mode: bool = False) -> None:
"""Change post-init if metric states should be saved to its state_dict."""
for key in self._persistent:
self._persistent[key] = mode
def state_dict( # type: ignore[override] # todo
self,
destination: Optional[dict[str, Any]] = None,
prefix: str = "",
keep_vars: bool = False,
) -> dict[str, Any]:
"""Get the current state of metric as an dictionary.
Args:
destination: Optional dictionary, that if provided, the state of module will be updated into the dict and
the same object is returned. Otherwise, an ``OrderedDict`` will be created and returned.
prefix: optional string, a prefix added to parameter and buffer names to compose the keys in state_dict.
keep_vars: by default the :class:`~torch.Tensor` returned in the state dict are detached from autograd.
If set to ``True``, detaching will not be performed.
"""
destination: dict[str, Union[torch.Tensor, list, Any]] = super().state_dict(
destination=destination, # type: ignore[arg-type]
prefix=prefix,
keep_vars=keep_vars,
)
# Register metric states to be part of the state_dict
for key in self._defaults:
if not self._persistent[key]:
continue
current_val = getattr(self, key)
if not keep_vars:
if isinstance(current_val, Tensor):
current_val = current_val.detach()
elif isinstance(current_val, list):
current_val = [cur_v.detach() if isinstance(cur_v, Tensor) else cur_v for cur_v in current_val]
destination[prefix + key] = deepcopy(current_val)
return destination
def _copy_state_dict(self) -> dict[str, Union[Tensor, list[Any]]]:
"""Copy the current state values."""
cache: dict[str, Union[Tensor, list[Any]]] = {}
for attr in self._defaults:
current_value = getattr(self, attr)
if isinstance(current_value, Tensor):
cache[attr] = current_value.detach().clone().to(current_value.device)
else:
cache[attr] = [ # safely copy (non-graph leaf) Tensor elements
_.detach().clone().to(_.device) if isinstance(_, Tensor) else deepcopy(_) for _ in current_value
]
return cache
def _load_from_state_dict(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""Load metric states from state_dict."""
for key in self._defaults:
name = prefix + key
if name in state_dict:
setattr(self, key, state_dict.pop(name))
super()._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
def _filter_kwargs(self, **kwargs: Any) -> dict[str, Any]:
"""Filter kwargs such that they match the update signature of the metric."""
# filter all parameters based on update signature except those of
# types `VAR_POSITIONAL` for `* args` and `VAR_KEYWORD` for `** kwargs`
_params = (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD)
_sign_params = self._update_signature.parameters
filtered_kwargs = {
k: v for k, v in kwargs.items() if (k in _sign_params and _sign_params[k].kind not in _params)
}
exists_var_keyword = any(v.kind == inspect.Parameter.VAR_KEYWORD for v in _sign_params.values())
# if no kwargs filtered, return all kwargs as default
if not filtered_kwargs and not exists_var_keyword:
# no kwargs in update signature -> don't return any kwargs
return {}
if exists_var_keyword:
# kwargs found in update signature -> return all kwargs to be sure to not omit any.
# filtering logic is likely implemented within the update call.
return kwargs
return filtered_kwargs
def __hash__(self) -> int:
"""Return an unique hash of the metric.
The hash depends on both the class itself but also the current metric state, which therefore enforces that two
instances of the same metrics never have the same hash even if they have been updated on the same data.
"""
# we need to add the id here, since PyTorch requires a module hash to be unique.
# Internally, PyTorch nn.Module relies on that for children discovery
# (see https://github.com/pytorch/pytorch/blob/v1.9.0/torch/nn/modules/module.py#L1544)
# For metrics that include tensors it is not a problem,
# since their hash is unique based on the memory location but we cannot rely on that for every metric.
hash_vals = [self.__class__.__name__, id(self)]
for key in self._defaults:
val = getattr(self, key)
# Special case: allow list values, so long
# as their elements are hashable
if hasattr(val, "__iter__") and not isinstance(val, Tensor):
hash_vals.extend(val)
else:
hash_vals.append(val)
return hash(tuple(hash_vals))
def __add__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the addition operator."""
return CompositionalMetric(torch.add, self, other)
def __and__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical and operator."""
return CompositionalMetric(torch.bitwise_and, self, other)
def __eq__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric": # type: ignore[override]
"""Construct compositional metric using the equal operator."""
return CompositionalMetric(torch.eq, self, other)
def __floordiv__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the floor division operator."""
return CompositionalMetric(torch.floor_divide, self, other)
def __ge__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the greater than or equal operator."""
return CompositionalMetric(torch.ge, self, other)
def __gt__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the greater than operator."""
return CompositionalMetric(torch.gt, self, other)
def __le__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the less than or equal operator."""
return CompositionalMetric(torch.le, self, other)
def __lt__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the less than operator."""
return CompositionalMetric(torch.lt, self, other)
def __matmul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the matrix multiplication operator."""
return CompositionalMetric(torch.matmul, self, other)
def __mod__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the remainder operator."""
return CompositionalMetric(torch.fmod, self, other)
def __mul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the multiplication operator."""
return CompositionalMetric(torch.mul, self, other)
def __ne__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric": # type: ignore[override]
"""Construct compositional metric using the not equal operator."""
return CompositionalMetric(torch.ne, self, other)
def __or__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical or operator."""
return CompositionalMetric(torch.bitwise_or, self, other)
def __pow__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the exponential/power operator."""
return CompositionalMetric(torch.pow, self, other)
def __radd__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the addition operator."""
return CompositionalMetric(torch.add, other, self)
def __rand__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical and operator."""
# swap them since bitwise_and only supports that way and it's commutative
return CompositionalMetric(torch.bitwise_and, self, other)
def __rfloordiv__(self, other: "CompositionalMetric") -> "Metric":
"""Construct compositional metric using the floor division operator."""
return CompositionalMetric(torch.floor_divide, other, self)
def __rmatmul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the matrix multiplication operator."""
return CompositionalMetric(torch.matmul, other, self)
def __rmod__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the remainder operator."""
return CompositionalMetric(torch.fmod, other, self)
def __rmul__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the multiplication operator."""
return CompositionalMetric(torch.mul, other, self)
def __ror__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical or operator."""
return CompositionalMetric(torch.bitwise_or, other, self)
def __rpow__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the exponential/power operator."""
return CompositionalMetric(torch.pow, other, self)
def __rsub__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the subtraction operator."""
return CompositionalMetric(torch.sub, other, self)
def __rtruediv__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the true divide operator."""
return CompositionalMetric(torch.true_divide, other, self)
def __rxor__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical xor operator."""
return CompositionalMetric(torch.bitwise_xor, other, self)
def __sub__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the subtraction operator."""
return CompositionalMetric(torch.sub, self, other)
def __truediv__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the true divide operator."""
return CompositionalMetric(torch.true_divide, self, other)
def __xor__(self, other: Union["Metric", builtins.float, Tensor]) -> "CompositionalMetric":
"""Construct compositional metric using the logical xor operator."""
return CompositionalMetric(torch.bitwise_xor, self, other)
def __abs__(self) -> "CompositionalMetric":
"""Construct compositional metric using the absolute operator."""
return CompositionalMetric(torch.abs, self, None)
def __inv__(self) -> "CompositionalMetric":
"""Construct compositional metric using the not operator."""
return CompositionalMetric(torch.bitwise_not, self, None)
def __invert__(self) -> "CompositionalMetric":
"""Construct compositional metric using the not operator."""
return self.__inv__()
def __neg__(self) -> "CompositionalMetric":
"""Construct compositional metric using absolute negative operator."""
return CompositionalMetric(_neg, self, None)
def __pos__(self) -> "CompositionalMetric":
"""Construct compositional metric using absolute operator."""
return CompositionalMetric(torch.abs, self, None)
def __getitem__(self, idx: int) -> "CompositionalMetric":
"""Construct compositional metric using the get item operator."""
return CompositionalMetric(lambda x: x[idx], self, None)
def __getnewargs__(self) -> tuple:
"""Needed method for construction of new metrics __new__ method."""
return tuple(
Metric.__str__(self),
)
__iter__ = None
def _neg(x: Tensor) -> Tensor:
return -torch.abs(x)
class CompositionalMetric(Metric):
"""Composition of two metrics with a specific operator which will be executed upon metrics compute."""
def __init__(
self,
operator: Callable,
metric_a: Union[Metric, float, Tensor],
metric_b: Union[Metric, float, Tensor, None],
) -> None:
"""Class for creating compositions of metrics.
This metric class is the output of adding, multiplying etc. any other metric. The metric re-implements the
standard ``update``, ``forward``, ``reset`` and ``compute`` methods to redirect the arguments to the metrics
that formed this composition.
Args:
operator:
The operator taking in one (if metric_b is None) or two arguments. Will be applied to outputs of
metric_a.compute() and (optionally if metric_b is not None) metric_b.compute()
metric_a:
First metric whose compute() result is the first argument of operator
metric_b: second metric whose compute() result is the second argument of operator.
For operators taking in only one input, this should be None.
"""
super().__init__()
self.op = operator
if isinstance(metric_a, Tensor):
self.register_buffer("metric_a", metric_a, persistent=False)
else:
self.metric_a = metric_a
if isinstance(metric_b, Tensor):
self.register_buffer("metric_b", metric_b, persistent=False)
else:
self.metric_b = metric_b
def _sync_dist(self, dist_sync_fn: Optional[Callable] = None, process_group: Optional[Any] = None) -> None:
"""No syncing required here.
syncing will be done in metric_a and metric_b.
"""
def update(self, *args: Any, **kwargs: Any) -> None:
"""Redirect the call to the input which the composition was formed from."""
if isinstance(self.metric_a, Metric):
self.metric_a.update(*args, **self.metric_a._filter_kwargs(**kwargs))
if isinstance(self.metric_b, Metric):
self.metric_b.update(*args, **self.metric_b._filter_kwargs(**kwargs))
def compute(self) -> Any:
"""Redirect the call to the input which the composition was formed from."""
# also some parsing for kwargs?
val_a = self.metric_a.compute() if isinstance(self.metric_a, Metric) else self.metric_a
val_b = self.metric_b.compute() if isinstance(self.metric_b, Metric) else self.metric_b
if val_b is None:
return self.op(val_a)
return self.op(val_a, val_b)
@torch.jit.unused
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Calculate metric on current batch and accumulate to global state."""
val_a = (
self.metric_a(*args, **self.metric_a._filter_kwargs(**kwargs))
if isinstance(self.metric_a, Metric)
else self.metric_a
)
val_b = (
self.metric_b(*args, **self.metric_b._filter_kwargs(**kwargs))
if isinstance(self.metric_b, Metric)
else self.metric_b
)
if val_a is None:
self._forward_cache = None
return self._forward_cache
if val_b is None:
if isinstance(self.metric_b, Metric):
self._forward_cache = None
return self._forward_cache
# Unary op
self._forward_cache = self.op(val_a)
return self._forward_cache
# Binary op
self._forward_cache = self.op(val_a, val_b)
return self._forward_cache
def reset(self) -> None:
"""Redirect the call to the input which the composition was formed from."""
if isinstance(self.metric_a, Metric):
self.metric_a.reset()
if isinstance(self.metric_b, Metric):
self.metric_b.reset()
def persistent(self, mode: bool = False) -> None:
"""Change if metric state is persistent (save as part of state_dict) or not.
Args:
mode: bool indicating if all states should be persistent or not
"""
if isinstance(self.metric_a, Metric):
self.metric_a.persistent(mode=mode)
if isinstance(self.metric_b, Metric):
self.metric_b.persistent(mode=mode)
def __repr__(self) -> str:
"""Return a representation of the compositional metric, including the two inputs it was formed from."""
_op_metrics = f"(\n {self.op.__name__}(\n {self.metric_a!r},\n {self.metric_b!r}\n )\n)"
return self.__class__.__name__ + _op_metrics
def _wrap_compute(self, compute: Callable) -> Callable:
"""No wrapping necessary for compositional metrics."""
return compute
|