File size: 3,168 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from torch import Tensor, tensor
from torchmetrics.functional.image.vif import _vif_per_channel
from torchmetrics.metric import Metric
class VisualInformationFidelity(Metric):
"""Compute Pixel Based Visual Information Fidelity (VIF_).
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)`` with H,W β₯ 41
- ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)`` with H,W β₯ 41
As output of `forward` and `compute` the metric returns the following output
- ``vif-p`` (:class:`~torch.Tensor`): Tensor with vif-p score
Args:
sigma_n_sq: variance of the visual noise
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import randn
>>> from torchmetrics.image import VisualInformationFidelity
>>> preds = randn([32, 3, 41, 41])
>>> target = randn([32, 3, 41, 41])
>>> vif = VisualInformationFidelity()
>>> vif(preds, target)
tensor(0.0032)
"""
is_differentiable = True
higher_is_better = True
full_state_update = False
vif_score: Tensor
total: Tensor
def __init__(self, sigma_n_sq: float = 2.0, **kwargs: Any) -> None:
super().__init__(**kwargs)
if not isinstance(sigma_n_sq, float) and not isinstance(sigma_n_sq, int):
raise ValueError(f"Argument `sigma_n_sq` is expected to be a positive float or int, but got {sigma_n_sq}")
if sigma_n_sq < 0:
raise ValueError(f"Argument `sigma_n_sq` is expected to be a positive float or int, but got {sigma_n_sq}")
self.add_state("vif_score", default=tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=tensor(0.0), dist_reduce_fx="sum")
self.sigma_n_sq = sigma_n_sq
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
channels = preds.size(1)
vif_per_channel = [
_vif_per_channel(preds[:, i, :, :], target[:, i, :, :], self.sigma_n_sq) for i in range(channels)
]
vif_per_channel = torch.mean(torch.stack(vif_per_channel), 0) if channels > 1 else torch.cat(vif_per_channel)
self.vif_score += torch.sum(vif_per_channel)
self.total += preds.shape[0]
def compute(self) -> Tensor:
"""Compute vif-p over state."""
return self.vif_score / self.total
|