File size: 6,843 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union

from torch import Tensor, tensor
from typing_extensions import Literal

from torchmetrics.functional.image.uqi import _uqi_compute, _uqi_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["UniversalImageQualityIndex.plot"]


class UniversalImageQualityIndex(Metric):
    """Compute Universal Image Quality Index (UniversalImageQualityIndex_).

    As input to ``forward`` and ``update`` the metric accepts the following input

    - ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)``
    - ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)``

    As output of `forward` and `compute` the metric returns the following output

    - ``uiqi`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average UIQI value
      over sample else returns tensor of shape ``(N,)`` with UIQI values per sample

    Args:
        kernel_size: size of the gaussian kernel
        sigma: Standard deviation of the gaussian kernel
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'`` or ``None``: no reduction will be applied

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Return:
        Tensor with UniversalImageQualityIndex score

    Example:
        >>> import torch
        >>> from torchmetrics.image import UniversalImageQualityIndex
        >>> preds = torch.rand([16, 1, 16, 16])
        >>> target = preds * 0.75
        >>> uqi = UniversalImageQualityIndex()
        >>> uqi(preds, target)
        tensor(0.9216)

    """

    is_differentiable: bool = True
    higher_is_better: bool = True
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    preds: List[Tensor]
    target: List[Tensor]
    sum_uqi: Tensor
    numel: Tensor

    def __init__(
        self,
        kernel_size: Sequence[int] = (11, 11),
        sigma: Sequence[float] = (1.5, 1.5),
        reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        if reduction not in ("elementwise_mean", "sum", "none", None):
            raise ValueError(
                f"The `reduction` {reduction} is not valid. Valid options are `elementwise_mean`, `sum`, `none`, None."
            )
        if reduction is None or reduction == "none":
            rank_zero_warn(
                "Metric `UniversalImageQualityIndex` will save all targets and predictions in the buffer when using"
                "`reduction=None` or `reduction='none'. For large datasets, this may lead to a large memory footprint."
            )
            self.add_state("preds", default=[], dist_reduce_fx="cat")
            self.add_state("target", default=[], dist_reduce_fx="cat")
        else:
            self.add_state("sum_uqi", tensor(0.0), dist_reduce_fx="sum")
            self.add_state("numel", tensor(0), dist_reduce_fx="sum")
        self.kernel_size = kernel_size
        self.sigma = sigma
        self.reduction = reduction

    def update(self, preds: Tensor, target: Tensor) -> None:
        """Update state with predictions and targets."""
        preds, target = _uqi_update(preds, target)
        if self.reduction is None or self.reduction == "none":
            self.preds.append(preds)
            self.target.append(target)
        else:
            uqi_score = _uqi_compute(preds, target, self.kernel_size, self.sigma, reduction="sum")
            self.sum_uqi += uqi_score
            ps = preds.shape
            self.numel += ps[0] * ps[1] * (ps[2] - self.kernel_size[0] + 1) * (ps[3] - self.kernel_size[1] + 1)

    def compute(self) -> Tensor:
        """Compute explained variance over state."""
        if self.reduction == "none" or self.reduction is None:
            preds = dim_zero_cat(self.preds)
            target = dim_zero_cat(self.target)
            return _uqi_compute(preds, target, self.kernel_size, self.sigma, self.reduction)
        return self.sum_uqi / self.numel if self.reduction == "elementwise_mean" else self.sum_uqi

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.image import UniversalImageQualityIndex
            >>> preds = torch.rand([16, 1, 16, 16])
            >>> target = preds * 0.75
            >>> metric = UniversalImageQualityIndex()
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.image import UniversalImageQualityIndex
            >>> preds = torch.rand([16, 1, 16, 16])
            >>> target = preds * 0.75
            >>> metric = UniversalImageQualityIndex()
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(preds, target))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)