File size: 5,306 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union
import torch
from torch import Tensor, tensor
from typing_extensions import Literal
from torchmetrics.functional.image.tv import _total_variation_compute, _total_variation_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["TotalVariation.plot"]
class TotalVariation(Metric):
"""Compute Total Variation loss (`TV`_).
As input to ``forward`` and ``update`` the metric accepts the following input
- ``img`` (:class:`~torch.Tensor`): A tensor of shape ``(N, C, H, W)`` consisting of images
As output of `forward` and `compute` the metric returns the following output
- ``sdi`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average TV value
over sample else returns tensor of shape ``(N,)`` with TV values per sample
Args:
reduction: a method to reduce metric score over samples
- ``'mean'``: takes the mean over samples
- ``'sum'``: takes the sum over samples
- ``None`` or ``'none'``: return the score per sample
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``reduction`` is not one of ``'sum'``, ``'mean'``, ``'none'`` or ``None``
Example:
>>> from torch import rand
>>> from torchmetrics.image import TotalVariation
>>> tv = TotalVariation()
>>> img = torch.rand(5, 3, 28, 28)
>>> tv(img)
tensor(7546.8018)
"""
full_state_update: bool = False
is_differentiable: bool = True
higher_is_better: bool = False
plot_lower_bound: float = 0.0
num_elements: Tensor
score_list: List[Tensor]
score: Tensor
def __init__(self, reduction: Optional[Literal["mean", "sum", "none"]] = "sum", **kwargs: Any) -> None:
super().__init__(**kwargs)
if reduction is not None and reduction not in ("sum", "mean", "none"):
raise ValueError("Expected argument `reduction` to either be 'sum', 'mean', 'none' or None")
self.reduction = reduction
self.add_state("score_list", default=[], dist_reduce_fx="cat")
self.add_state("score", default=tensor(0, dtype=torch.float), dist_reduce_fx="sum")
self.add_state("num_elements", default=tensor(0, dtype=torch.int), dist_reduce_fx="sum")
def update(self, img: Tensor) -> None:
"""Update current score with batch of input images."""
score, num_elements = _total_variation_update(img)
if self.reduction is None or self.reduction == "none":
self.score_list.append(score)
else:
self.score += score.sum()
self.num_elements += num_elements
def compute(self) -> Tensor:
"""Compute final total variation."""
score = dim_zero_cat(self.score_list) if self.reduction is None or self.reduction == "none" else self.score
return _total_variation_compute(score, self.num_elements, self.reduction)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image import TotalVariation
>>> metric = TotalVariation()
>>> metric.update(torch.rand(5, 3, 28, 28))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image import TotalVariation
>>> metric = TotalVariation()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.rand(5, 3, 28, 28)))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|