File size: 9,626 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections.abc import Sequence
from typing import Any, List, Optional, Union

from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.image.d_lambda import _spectral_distortion_index_compute, _spectral_distortion_index_update
from torchmetrics.functional.image.d_s import _spatial_distortion_index_compute, _spatial_distortion_index_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["QualityWithNoReference.plot"]

if not _TORCHVISION_AVAILABLE:
    __doctest_skip__ = ["QualityWithNoReference", "QualityWithNoReference.plot"]


class QualityWithNoReference(Metric):
    """Compute Quality with No Reference (QualityWithNoReference_) also now as QNR.

    The metric is used to compare the joint spectral and spatial distortion between two images.

    As input to ``forward`` and ``update`` the metric accepts the following input

    - ``preds`` (:class:`~torch.Tensor`): High resolution multispectral image of shape ``(N,C,H,W)``.
    - ``target`` (:class:`~Dict`): A dictionary containing the following keys:

      - ``ms`` (:class:`~torch.Tensor`): Low resolution multispectral image of shape ``(N,C,H',W')``.
      - ``pan`` (:class:`~torch.Tensor`): High resolution panchromatic image of shape ``(N,C,H,W)``.
      - ``pan_lr`` (:class:`~torch.Tensor`): (optional) Low resolution panchromatic image of shape ``(N,C,H',W')``.

    where H and W must be multiple of H' and W'.

    When ``pan_lr`` is ``None``, a uniform filter will be applied on ``pan`` to produce a degraded image. The degraded
    image is then resized to match the size of ``ms`` and served as ``pan_lr`` in the calculation.

    As output of `forward` and `compute` the metric returns the following output

    - ``qnr`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average QNR value
      over sample else returns tensor of shape ``(N,)`` with QNR values per sample

    Args:
        alpha: Relevance of spectral distortion.
        beta: Relevance of spatial distortion.
        norm_order: Order of the norm applied on the difference.
        window_size: Window size of the filter applied to degrade the high resolution panchromatic image.
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'``: no reduction will be applied

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example:
        >>> from torch import rand
        >>> from torchmetrics.image import QualityWithNoReference
        >>> preds = rand([16, 3, 32, 32])
        >>> target = {
        ...     'ms': rand([16, 3, 16, 16]),
        ...     'pan': rand([16, 3, 32, 32]),
        ... }
        >>> qnr = QualityWithNoReference()
        >>> qnr(preds, target)
        tensor(0.9694)

    """

    higher_is_better: bool = True
    is_differentiable: bool = True
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    preds: List[Tensor]
    ms: List[Tensor]
    pan: List[Tensor]
    pan_lr: List[Tensor]

    def __init__(
        self,
        alpha: float = 1,
        beta: float = 1,
        norm_order: int = 1,
        window_size: int = 7,
        reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean",
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        rank_zero_warn(
            "Metric `QualityWithNoReference` will save all targets and predictions in buffer."
            " For large datasets this may lead to large memory footprint."
        )

        if not isinstance(alpha, (int, float)) or alpha < 0:
            raise ValueError(f"Expected `alpha` to be a non-negative real number. Got alpha: {alpha}.")
        self.alpha = alpha
        if not isinstance(beta, (int, float)) or beta < 0:
            raise ValueError(f"Expected `beta` to be a non-negative real number. Got beta: {beta}.")
        self.beta = beta
        if not isinstance(norm_order, int) or norm_order <= 0:
            raise ValueError(f"Expected `norm_order` to be a positive integer. Got norm_order: {norm_order}.")
        self.norm_order = norm_order
        if not isinstance(window_size, int) or window_size <= 0:
            raise ValueError(f"Expected `window_size` to be a positive integer. Got window_size: {window_size}.")
        self.window_size = window_size
        allowed_reductions = ("elementwise_mean", "sum", "none")
        if reduction not in allowed_reductions:
            raise ValueError(f"Expected argument `reduction` be one of {allowed_reductions} but got {reduction}")
        self.reduction = reduction
        self.add_state("preds", default=[], dist_reduce_fx="cat")
        self.add_state("ms", default=[], dist_reduce_fx="cat")
        self.add_state("pan", default=[], dist_reduce_fx="cat")
        self.add_state("pan_lr", default=[], dist_reduce_fx="cat")

    def update(self, preds: Tensor, target: dict[str, Tensor]) -> None:
        """Update state with preds and target.

        Args:
            preds: High resolution multispectral image.
            target: A dictionary containing the following keys:

                - ``'ms'``: low resolution multispectral image.
                - ``'pan'``: high resolution panchromatic image.
                - ``'pan_lr'``: (optional) low resolution panchromatic image.

        Raises:
            ValueError:
                If ``target`` doesn't have ``ms`` and ``pan``.

        """
        if "ms" not in target:
            raise ValueError(f"Expected `target` to have key `ms`. Got target: {target.keys()}.")
        if "pan" not in target:
            raise ValueError(f"Expected `target` to have key `pan`. Got target: {target.keys()}.")
        ms = target["ms"]
        pan = target["pan"]
        pan_lr = target.get("pan_lr")
        preds, ms = _spectral_distortion_index_update(preds, ms)
        preds, ms, pan, pan_lr = _spatial_distortion_index_update(preds, ms, pan, pan_lr)
        self.preds.append(preds)
        self.ms.append(target["ms"])
        self.pan.append(target["pan"])
        if "pan_lr" in target:
            self.pan_lr.append(target["pan_lr"])

    def compute(self) -> Tensor:
        """Compute and returns quality with no reference."""
        preds = dim_zero_cat(self.preds)
        ms = dim_zero_cat(self.ms)
        pan = dim_zero_cat(self.pan)
        pan_lr = dim_zero_cat(self.pan_lr) if len(self.pan_lr) > 0 else None
        d_lambda = _spectral_distortion_index_compute(preds, ms, self.norm_order, self.reduction)
        d_s = _spatial_distortion_index_compute(
            preds, ms, pan, pan_lr, self.norm_order, self.window_size, self.reduction
        )
        return (1 - d_lambda) ** self.alpha * (1 - d_s) ** self.beta

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> from torch import rand
            >>> from torchmetrics.image import QualityWithNoReference
            >>> preds = rand([16, 3, 32, 32])
            >>> target = {
            ...     'ms': rand([16, 3, 16, 16]),
            ...     'pan': rand([16, 3, 32, 32]),
            ... }
            >>> metric = QualityWithNoReference()
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> from torch import rand
            >>> from torchmetrics.image import QualityWithNoReference
            >>> preds = rand([16, 3, 32, 32])
            >>> target = {
            ...     'ms': rand([16, 3, 16, 16]),
            ...     'pan': rand([16, 3, 32, 32]),
            ... }
            >>> metric = QualityWithNoReference()
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(preds, target))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)