File size: 9,626 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.image.d_lambda import _spectral_distortion_index_compute, _spectral_distortion_index_update
from torchmetrics.functional.image.d_s import _spatial_distortion_index_compute, _spatial_distortion_index_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["QualityWithNoReference.plot"]
if not _TORCHVISION_AVAILABLE:
__doctest_skip__ = ["QualityWithNoReference", "QualityWithNoReference.plot"]
class QualityWithNoReference(Metric):
"""Compute Quality with No Reference (QualityWithNoReference_) also now as QNR.
The metric is used to compare the joint spectral and spatial distortion between two images.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): High resolution multispectral image of shape ``(N,C,H,W)``.
- ``target`` (:class:`~Dict`): A dictionary containing the following keys:
- ``ms`` (:class:`~torch.Tensor`): Low resolution multispectral image of shape ``(N,C,H',W')``.
- ``pan`` (:class:`~torch.Tensor`): High resolution panchromatic image of shape ``(N,C,H,W)``.
- ``pan_lr`` (:class:`~torch.Tensor`): (optional) Low resolution panchromatic image of shape ``(N,C,H',W')``.
where H and W must be multiple of H' and W'.
When ``pan_lr`` is ``None``, a uniform filter will be applied on ``pan`` to produce a degraded image. The degraded
image is then resized to match the size of ``ms`` and served as ``pan_lr`` in the calculation.
As output of `forward` and `compute` the metric returns the following output
- ``qnr`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average QNR value
over sample else returns tensor of shape ``(N,)`` with QNR values per sample
Args:
alpha: Relevance of spectral distortion.
beta: Relevance of spatial distortion.
norm_order: Order of the norm applied on the difference.
window_size: Window size of the filter applied to degrade the high resolution panchromatic image.
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import rand
>>> from torchmetrics.image import QualityWithNoReference
>>> preds = rand([16, 3, 32, 32])
>>> target = {
... 'ms': rand([16, 3, 16, 16]),
... 'pan': rand([16, 3, 32, 32]),
... }
>>> qnr = QualityWithNoReference()
>>> qnr(preds, target)
tensor(0.9694)
"""
higher_is_better: bool = True
is_differentiable: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
preds: List[Tensor]
ms: List[Tensor]
pan: List[Tensor]
pan_lr: List[Tensor]
def __init__(
self,
alpha: float = 1,
beta: float = 1,
norm_order: int = 1,
window_size: int = 7,
reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
rank_zero_warn(
"Metric `QualityWithNoReference` will save all targets and predictions in buffer."
" For large datasets this may lead to large memory footprint."
)
if not isinstance(alpha, (int, float)) or alpha < 0:
raise ValueError(f"Expected `alpha` to be a non-negative real number. Got alpha: {alpha}.")
self.alpha = alpha
if not isinstance(beta, (int, float)) or beta < 0:
raise ValueError(f"Expected `beta` to be a non-negative real number. Got beta: {beta}.")
self.beta = beta
if not isinstance(norm_order, int) or norm_order <= 0:
raise ValueError(f"Expected `norm_order` to be a positive integer. Got norm_order: {norm_order}.")
self.norm_order = norm_order
if not isinstance(window_size, int) or window_size <= 0:
raise ValueError(f"Expected `window_size` to be a positive integer. Got window_size: {window_size}.")
self.window_size = window_size
allowed_reductions = ("elementwise_mean", "sum", "none")
if reduction not in allowed_reductions:
raise ValueError(f"Expected argument `reduction` be one of {allowed_reductions} but got {reduction}")
self.reduction = reduction
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("ms", default=[], dist_reduce_fx="cat")
self.add_state("pan", default=[], dist_reduce_fx="cat")
self.add_state("pan_lr", default=[], dist_reduce_fx="cat")
def update(self, preds: Tensor, target: dict[str, Tensor]) -> None:
"""Update state with preds and target.
Args:
preds: High resolution multispectral image.
target: A dictionary containing the following keys:
- ``'ms'``: low resolution multispectral image.
- ``'pan'``: high resolution panchromatic image.
- ``'pan_lr'``: (optional) low resolution panchromatic image.
Raises:
ValueError:
If ``target`` doesn't have ``ms`` and ``pan``.
"""
if "ms" not in target:
raise ValueError(f"Expected `target` to have key `ms`. Got target: {target.keys()}.")
if "pan" not in target:
raise ValueError(f"Expected `target` to have key `pan`. Got target: {target.keys()}.")
ms = target["ms"]
pan = target["pan"]
pan_lr = target.get("pan_lr")
preds, ms = _spectral_distortion_index_update(preds, ms)
preds, ms, pan, pan_lr = _spatial_distortion_index_update(preds, ms, pan, pan_lr)
self.preds.append(preds)
self.ms.append(target["ms"])
self.pan.append(target["pan"])
if "pan_lr" in target:
self.pan_lr.append(target["pan_lr"])
def compute(self) -> Tensor:
"""Compute and returns quality with no reference."""
preds = dim_zero_cat(self.preds)
ms = dim_zero_cat(self.ms)
pan = dim_zero_cat(self.pan)
pan_lr = dim_zero_cat(self.pan_lr) if len(self.pan_lr) > 0 else None
d_lambda = _spectral_distortion_index_compute(preds, ms, self.norm_order, self.reduction)
d_s = _spatial_distortion_index_compute(
preds, ms, pan, pan_lr, self.norm_order, self.window_size, self.reduction
)
return (1 - d_lambda) ** self.alpha * (1 - d_s) ** self.beta
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> from torch import rand
>>> from torchmetrics.image import QualityWithNoReference
>>> preds = rand([16, 3, 32, 32])
>>> target = {
... 'ms': rand([16, 3, 16, 16]),
... 'pan': rand([16, 3, 32, 32]),
... }
>>> metric = QualityWithNoReference()
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> from torch import rand
>>> from torchmetrics.image import QualityWithNoReference
>>> preds = rand([16, 3, 32, 32])
>>> target = {
... 'ms': rand([16, 3, 16, 16]),
... 'pan': rand([16, 3, 32, 32]),
... }
>>> metric = QualityWithNoReference()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|