File size: 9,637 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from functools import partial
from typing import Any, Optional, Union

import torch
from torch import Tensor, tensor
from typing_extensions import Literal

from torchmetrics.functional.image.psnr import _psnr_compute, _psnr_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["PeakSignalNoiseRatio.plot"]


class PeakSignalNoiseRatio(Metric):
    r"""`Compute Peak Signal-to-Noise Ratio`_ (PSNR).

    .. math:: \text{PSNR}(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{\text{MSE}(I, J)}\right)

    Where :math:`\text{MSE}` denotes the `mean-squared-error`_ function.

    As input to ``forward`` and ``update`` the metric accepts the following input

    - ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)``
    - ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)``

    As output of `forward` and `compute` the metric returns the following output

    - ``psnr`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average PSNR value
      over sample else returns tensor of shape ``(N,)`` with PSNR values per sample

    Args:
        data_range:
            the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then
            the range is calculated as the difference and input is clamped between the values.
            The ``data_range`` must be given when ``dim`` is not None.
        base: a base of a logarithm to use.
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'`` or ``None``: no reduction will be applied

        dim:
            Dimensions to reduce PSNR scores over, provided as either an integer or a list of integers. Default is
            None meaning scores will be reduced across all dimensions and all batches.
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ValueError:
            If ``dim`` is not ``None`` and ``data_range`` is not given.

    Example:
        >>> from torchmetrics.image import PeakSignalNoiseRatio
        >>> psnr = PeakSignalNoiseRatio()
        >>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
        >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
        >>> psnr(preds, target)
        tensor(2.5527)

    """

    is_differentiable: bool = True
    higher_is_better: bool = True
    full_state_update: bool = False
    plot_lower_bound: float = 0.0

    min_target: Tensor
    max_target: Tensor

    def __init__(
        self,
        data_range: Optional[Union[float, tuple[float, float]]] = None,
        base: float = 10.0,
        reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
        dim: Optional[Union[int, tuple[int, ...]]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)

        if dim is None and reduction != "elementwise_mean":
            rank_zero_warn(f"The `reduction={reduction}` will not have any effect when `dim` is None.")

        if dim is None:
            self.add_state("sum_squared_error", default=tensor(0.0), dist_reduce_fx="sum")
            self.add_state("total", default=tensor(0), dist_reduce_fx="sum")
        else:
            self.add_state("sum_squared_error", default=[], dist_reduce_fx="cat")
            self.add_state("total", default=[], dist_reduce_fx="cat")

        self.clamping_fn = None
        if data_range is None:
            if dim is not None:
                # Maybe we could use `torch.amax(target, dim=dim) - torch.amin(target, dim=dim)` in PyTorch 1.7 to
                # calculate `data_range` in the future.
                raise ValueError("The `data_range` must be given when `dim` is not None.")

            self.data_range = None
            self.add_state("min_target", default=tensor(0.0), dist_reduce_fx=torch.min)
            self.add_state("max_target", default=tensor(0.0), dist_reduce_fx=torch.max)
        elif isinstance(data_range, tuple):
            self.add_state("data_range", default=tensor(data_range[1] - data_range[0]), dist_reduce_fx="mean")
            self.clamping_fn = partial(torch.clamp, min=data_range[0], max=data_range[1])
        else:
            self.add_state("data_range", default=tensor(float(data_range)), dist_reduce_fx="mean")
        self.base = base
        self.reduction = reduction
        self.dim = tuple(dim) if isinstance(dim, Sequence) else dim

    def update(self, preds: Tensor, target: Tensor) -> None:
        """Update state with predictions and targets."""
        if self.clamping_fn is not None:
            preds = self.clamping_fn(preds)
            target = self.clamping_fn(target)

        sum_squared_error, num_obs = _psnr_update(preds, target, dim=self.dim)
        if self.dim is None:
            if self.data_range is None:
                # keep track of min and max target values
                self.min_target = torch.minimum(target.min(), self.min_target)
                self.max_target = torch.maximum(target.max(), self.max_target)

            if not isinstance(self.sum_squared_error, Tensor):
                raise TypeError(
                    f"Expected `self.sum_squared_error` to be a Tensor, but got {type(self.sum_squared_error)}"
                )
            if not isinstance(self.total, Tensor):
                raise TypeError(f"Expected `self.total` to be a Tensor, but got {type(self.total)}")

            self.sum_squared_error += sum_squared_error
            self.total += num_obs
        else:
            if not isinstance(self.sum_squared_error, list):
                raise TypeError(
                    f"Expected `self.sum_squared_error` to be a list, but got {type(self.sum_squared_error)}"
                )
            if not isinstance(self.total, list):
                raise TypeError(f"Expected `self.total` to be a list, but got {type(self.total)}")
            self.sum_squared_error.append(sum_squared_error)
            self.total.append(num_obs)

    def compute(self) -> Tensor:
        """Compute peak signal-to-noise ratio over state."""
        data_range = self.data_range if self.data_range is not None else self.max_target - self.min_target

        if isinstance(self.sum_squared_error, torch.Tensor):
            sum_squared_error = self.sum_squared_error
        elif isinstance(self.sum_squared_error, list):
            sum_squared_error = torch.cat([value.flatten() for value in self.sum_squared_error])
        else:
            raise TypeError("Expected sum_squared_error to be a Tensor or a list of Tensors")

        if isinstance(self.total, torch.Tensor):
            total = self.total
        elif isinstance(self.total, list):
            total = torch.cat([value.flatten() for value in self.total])
        else:
            raise TypeError("Expected total to be a Tensor or a list of Tensors")

        return _psnr_compute(sum_squared_error, total, data_range, base=self.base, reduction=self.reduction)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.image import PeakSignalNoiseRatio
            >>> metric = PeakSignalNoiseRatio()
            >>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
            >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.image import PeakSignalNoiseRatio
            >>> metric = PeakSignalNoiseRatio()
            >>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
            >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(preds, target))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)