File size: 9,637 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from functools import partial
from typing import Any, Optional, Union
import torch
from torch import Tensor, tensor
from typing_extensions import Literal
from torchmetrics.functional.image.psnr import _psnr_compute, _psnr_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["PeakSignalNoiseRatio.plot"]
class PeakSignalNoiseRatio(Metric):
r"""`Compute Peak Signal-to-Noise Ratio`_ (PSNR).
.. math:: \text{PSNR}(I, J) = 10 * \log_{10} \left(\frac{\max(I)^2}{\text{MSE}(I, J)}\right)
Where :math:`\text{MSE}` denotes the `mean-squared-error`_ function.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)``
- ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)``
As output of `forward` and `compute` the metric returns the following output
- ``psnr`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average PSNR value
over sample else returns tensor of shape ``(N,)`` with PSNR values per sample
Args:
data_range:
the range of the data. If None, it is determined from the data (max - min). If a tuple is provided then
the range is calculated as the difference and input is clamped between the values.
The ``data_range`` must be given when ``dim`` is not None.
base: a base of a logarithm to use.
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'`` or ``None``: no reduction will be applied
dim:
Dimensions to reduce PSNR scores over, provided as either an integer or a list of integers. Default is
None meaning scores will be reduced across all dimensions and all batches.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``dim`` is not ``None`` and ``data_range`` is not given.
Example:
>>> from torchmetrics.image import PeakSignalNoiseRatio
>>> psnr = PeakSignalNoiseRatio()
>>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> psnr(preds, target)
tensor(2.5527)
"""
is_differentiable: bool = True
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
min_target: Tensor
max_target: Tensor
def __init__(
self,
data_range: Optional[Union[float, tuple[float, float]]] = None,
base: float = 10.0,
reduction: Literal["elementwise_mean", "sum", "none", None] = "elementwise_mean",
dim: Optional[Union[int, tuple[int, ...]]] = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if dim is None and reduction != "elementwise_mean":
rank_zero_warn(f"The `reduction={reduction}` will not have any effect when `dim` is None.")
if dim is None:
self.add_state("sum_squared_error", default=tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=tensor(0), dist_reduce_fx="sum")
else:
self.add_state("sum_squared_error", default=[], dist_reduce_fx="cat")
self.add_state("total", default=[], dist_reduce_fx="cat")
self.clamping_fn = None
if data_range is None:
if dim is not None:
# Maybe we could use `torch.amax(target, dim=dim) - torch.amin(target, dim=dim)` in PyTorch 1.7 to
# calculate `data_range` in the future.
raise ValueError("The `data_range` must be given when `dim` is not None.")
self.data_range = None
self.add_state("min_target", default=tensor(0.0), dist_reduce_fx=torch.min)
self.add_state("max_target", default=tensor(0.0), dist_reduce_fx=torch.max)
elif isinstance(data_range, tuple):
self.add_state("data_range", default=tensor(data_range[1] - data_range[0]), dist_reduce_fx="mean")
self.clamping_fn = partial(torch.clamp, min=data_range[0], max=data_range[1])
else:
self.add_state("data_range", default=tensor(float(data_range)), dist_reduce_fx="mean")
self.base = base
self.reduction = reduction
self.dim = tuple(dim) if isinstance(dim, Sequence) else dim
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
if self.clamping_fn is not None:
preds = self.clamping_fn(preds)
target = self.clamping_fn(target)
sum_squared_error, num_obs = _psnr_update(preds, target, dim=self.dim)
if self.dim is None:
if self.data_range is None:
# keep track of min and max target values
self.min_target = torch.minimum(target.min(), self.min_target)
self.max_target = torch.maximum(target.max(), self.max_target)
if not isinstance(self.sum_squared_error, Tensor):
raise TypeError(
f"Expected `self.sum_squared_error` to be a Tensor, but got {type(self.sum_squared_error)}"
)
if not isinstance(self.total, Tensor):
raise TypeError(f"Expected `self.total` to be a Tensor, but got {type(self.total)}")
self.sum_squared_error += sum_squared_error
self.total += num_obs
else:
if not isinstance(self.sum_squared_error, list):
raise TypeError(
f"Expected `self.sum_squared_error` to be a list, but got {type(self.sum_squared_error)}"
)
if not isinstance(self.total, list):
raise TypeError(f"Expected `self.total` to be a list, but got {type(self.total)}")
self.sum_squared_error.append(sum_squared_error)
self.total.append(num_obs)
def compute(self) -> Tensor:
"""Compute peak signal-to-noise ratio over state."""
data_range = self.data_range if self.data_range is not None else self.max_target - self.min_target
if isinstance(self.sum_squared_error, torch.Tensor):
sum_squared_error = self.sum_squared_error
elif isinstance(self.sum_squared_error, list):
sum_squared_error = torch.cat([value.flatten() for value in self.sum_squared_error])
else:
raise TypeError("Expected sum_squared_error to be a Tensor or a list of Tensors")
if isinstance(self.total, torch.Tensor):
total = self.total
elif isinstance(self.total, list):
total = torch.cat([value.flatten() for value in self.total])
else:
raise TypeError("Expected total to be a Tensor or a list of Tensors")
return _psnr_compute(sum_squared_error, total, data_range, base=self.base, reduction=self.reduction)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image import PeakSignalNoiseRatio
>>> metric = PeakSignalNoiseRatio()
>>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image import PeakSignalNoiseRatio
>>> metric = PeakSignalNoiseRatio()
>>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(preds, target))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|