File size: 7,924 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, ClassVar, Optional, Union

import torch
from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.image.lpips import _LPIPS, _lpips_compute, _lpips_update, _NoTrainLpips
from torchmetrics.metric import Metric
from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity.plot"]

if _TORCHVISION_AVAILABLE:

    def _download_lpips() -> None:
        _LPIPS(pretrained=True, net="vgg")

    if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_lpips):
        __doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LearnedPerceptualImagePatchSimilarity.plot"]
else:
    __doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LearnedPerceptualImagePatchSimilarity.plot"]


class LearnedPerceptualImagePatchSimilarity(Metric):
    """The Learned Perceptual Image Patch Similarity (`LPIPS_`) calculates perceptual similarity between two images.

    LPIPS essentially computes the similarity between the activations of two image patches for some pre-defined network.
    This measure has been shown to match human perception well. A low LPIPS score means that image patches are
    perceptual similar.

    Both input image patches are expected to have shape ``(N, 3, H, W)``. The minimum size of `H, W` depends on the
    chosen backbone (see `net_type` arg).

    .. hint::
        Using this metrics requires you to have ``torchvision`` package installed. Either install as
        ``pip install torchmetrics[image]`` or ``pip install torchvision``.

    As input to ``forward`` and ``update`` the metric accepts the following input

    - ``img1`` (:class:`~torch.Tensor`): tensor with images of shape ``(N, 3, H, W)``
    - ``img2`` (:class:`~torch.Tensor`): tensor with images of shape ``(N, 3, H, W)``

    As output of `forward` and `compute` the metric returns the following output

    - ``lpips`` (:class:`~torch.Tensor`): returns float scalar tensor with average LPIPS value over samples

    Args:
        net_type: str indicating backbone network type to use. Choose between `'alex'`, `'vgg'` or `'squeeze'`
        reduction: str indicating how to reduce over the batch dimension. Choose between `'sum'` or `'mean'`.
        normalize: by default this is ``False`` meaning that the input is expected to be in the [-1,1] range. If set
            to ``True`` will instead expect input to be in the ``[0,1]`` range.
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ModuleNotFoundError:
            If ``torchvision`` package is not installed
        ValueError:
            If ``net_type`` is not one of ``"vgg"``, ``"alex"`` or ``"squeeze"``
        ValueError:
            If ``reduction`` is not one of ``"mean"`` or ``"sum"``

    Example:
        >>> from torch import rand
        >>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
        >>> lpips = LearnedPerceptualImagePatchSimilarity(net_type='squeeze')
        >>> # LPIPS needs the images to be in the [-1, 1] range.
        >>> img1 = (rand(10, 3, 100, 100) * 2) - 1
        >>> img2 = (rand(10, 3, 100, 100) * 2) - 1
        >>> lpips(img1, img2)
        tensor(0.1024)

    """

    is_differentiable: bool = True
    higher_is_better: bool = False
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    sum_scores: Tensor
    total: Tensor
    feature_network: str = "net"

    # due to the use of named tuple in the backbone the net variable cannot be scripted
    __jit_ignored_attributes__: ClassVar[list[str]] = ["net"]

    def __init__(
        self,
        net_type: Literal["vgg", "alex", "squeeze"] = "alex",
        reduction: Literal["sum", "mean"] = "mean",
        normalize: bool = False,
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)

        if not _TORCHVISION_AVAILABLE:
            raise ModuleNotFoundError(
                "LPIPS metric requires that torchvision is installed."
                " Either install as `pip install torchmetrics[image]` or `pip install torchvision`."
            )

        valid_net_type = ("vgg", "alex", "squeeze")
        if net_type not in valid_net_type:
            raise ValueError(f"Argument `net_type` must be one of {valid_net_type}, but got {net_type}.")
        self.net = _NoTrainLpips(net=net_type)

        valid_reduction = ("mean", "sum")
        if reduction not in valid_reduction:
            raise ValueError(f"Argument `reduction` must be one of {valid_reduction}, but got {reduction}")
        self.reduction = reduction

        if not isinstance(normalize, bool):
            raise ValueError(f"Argument `normalize` should be an bool but got {normalize}")
        self.normalize = normalize

        self.add_state("sum_scores", torch.tensor(0.0), dist_reduce_fx="sum")
        self.add_state("total", torch.tensor(0.0), dist_reduce_fx="sum")

    def update(self, img1: Tensor, img2: Tensor) -> None:
        """Update internal states with lpips score."""
        loss, total = _lpips_update(img1, img2, net=self.net, normalize=self.normalize)
        self.sum_scores += loss.sum()
        self.total += total

    def compute(self) -> Tensor:
        """Compute final perceptual similarity metric."""
        return _lpips_compute(self.sum_scores, self.total, self.reduction)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
            >>> metric = LearnedPerceptualImagePatchSimilarity(net_type='squeeze')
            >>> metric.update(torch.rand(10, 3, 100, 100), torch.rand(10, 3, 100, 100))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
            >>> metric = LearnedPerceptualImagePatchSimilarity(net_type='squeeze')
            >>> values = [ ]
            >>> for _ in range(3):
            ...     values.append(metric(torch.rand(10, 3, 100, 100), torch.rand(10, 3, 100, 100)))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)