File size: 7,924 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, ClassVar, Optional, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.image.lpips import _LPIPS, _lpips_compute, _lpips_update, _NoTrainLpips
from torchmetrics.metric import Metric
from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCHVISION_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity.plot"]
if _TORCHVISION_AVAILABLE:
def _download_lpips() -> None:
_LPIPS(pretrained=True, net="vgg")
if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_lpips):
__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LearnedPerceptualImagePatchSimilarity.plot"]
else:
__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LearnedPerceptualImagePatchSimilarity.plot"]
class LearnedPerceptualImagePatchSimilarity(Metric):
"""The Learned Perceptual Image Patch Similarity (`LPIPS_`) calculates perceptual similarity between two images.
LPIPS essentially computes the similarity between the activations of two image patches for some pre-defined network.
This measure has been shown to match human perception well. A low LPIPS score means that image patches are
perceptual similar.
Both input image patches are expected to have shape ``(N, 3, H, W)``. The minimum size of `H, W` depends on the
chosen backbone (see `net_type` arg).
.. hint::
Using this metrics requires you to have ``torchvision`` package installed. Either install as
``pip install torchmetrics[image]`` or ``pip install torchvision``.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``img1`` (:class:`~torch.Tensor`): tensor with images of shape ``(N, 3, H, W)``
- ``img2`` (:class:`~torch.Tensor`): tensor with images of shape ``(N, 3, H, W)``
As output of `forward` and `compute` the metric returns the following output
- ``lpips`` (:class:`~torch.Tensor`): returns float scalar tensor with average LPIPS value over samples
Args:
net_type: str indicating backbone network type to use. Choose between `'alex'`, `'vgg'` or `'squeeze'`
reduction: str indicating how to reduce over the batch dimension. Choose between `'sum'` or `'mean'`.
normalize: by default this is ``False`` meaning that the input is expected to be in the [-1,1] range. If set
to ``True`` will instead expect input to be in the ``[0,1]`` range.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ModuleNotFoundError:
If ``torchvision`` package is not installed
ValueError:
If ``net_type`` is not one of ``"vgg"``, ``"alex"`` or ``"squeeze"``
ValueError:
If ``reduction`` is not one of ``"mean"`` or ``"sum"``
Example:
>>> from torch import rand
>>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
>>> lpips = LearnedPerceptualImagePatchSimilarity(net_type='squeeze')
>>> # LPIPS needs the images to be in the [-1, 1] range.
>>> img1 = (rand(10, 3, 100, 100) * 2) - 1
>>> img2 = (rand(10, 3, 100, 100) * 2) - 1
>>> lpips(img1, img2)
tensor(0.1024)
"""
is_differentiable: bool = True
higher_is_better: bool = False
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
sum_scores: Tensor
total: Tensor
feature_network: str = "net"
# due to the use of named tuple in the backbone the net variable cannot be scripted
__jit_ignored_attributes__: ClassVar[list[str]] = ["net"]
def __init__(
self,
net_type: Literal["vgg", "alex", "squeeze"] = "alex",
reduction: Literal["sum", "mean"] = "mean",
normalize: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if not _TORCHVISION_AVAILABLE:
raise ModuleNotFoundError(
"LPIPS metric requires that torchvision is installed."
" Either install as `pip install torchmetrics[image]` or `pip install torchvision`."
)
valid_net_type = ("vgg", "alex", "squeeze")
if net_type not in valid_net_type:
raise ValueError(f"Argument `net_type` must be one of {valid_net_type}, but got {net_type}.")
self.net = _NoTrainLpips(net=net_type)
valid_reduction = ("mean", "sum")
if reduction not in valid_reduction:
raise ValueError(f"Argument `reduction` must be one of {valid_reduction}, but got {reduction}")
self.reduction = reduction
if not isinstance(normalize, bool):
raise ValueError(f"Argument `normalize` should be an bool but got {normalize}")
self.normalize = normalize
self.add_state("sum_scores", torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", torch.tensor(0.0), dist_reduce_fx="sum")
def update(self, img1: Tensor, img2: Tensor) -> None:
"""Update internal states with lpips score."""
loss, total = _lpips_update(img1, img2, net=self.net, normalize=self.normalize)
self.sum_scores += loss.sum()
self.total += total
def compute(self) -> Tensor:
"""Compute final perceptual similarity metric."""
return _lpips_compute(self.sum_scores, self.total, self.reduction)
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
>>> metric = LearnedPerceptualImagePatchSimilarity(net_type='squeeze')
>>> metric.update(torch.rand(10, 3, 100, 100), torch.rand(10, 3, 100, 100))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
>>> metric = LearnedPerceptualImagePatchSimilarity(net_type='squeeze')
>>> values = [ ]
>>> for _ in range(3):
... values.append(metric(torch.rand(10, 3, 100, 100), torch.rand(10, 3, 100, 100)))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|