File size: 15,628 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union
import torch
from torch import Tensor
from torch.nn import Module
from torchmetrics.image.fid import NoTrainInceptionV3
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCH_FIDELITY_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["KernelInceptionDistance.plot"]
__doctest_requires__ = {("KernelInceptionDistance", "KernelInceptionDistance.plot"): ["torch_fidelity"]}
def maximum_mean_discrepancy(k_xx: Tensor, k_xy: Tensor, k_yy: Tensor) -> Tensor:
"""Adapted from `KID Score`_."""
m = k_xx.shape[0]
diag_x = torch.diag(k_xx)
diag_y = torch.diag(k_yy)
kt_xx_sums = k_xx.sum(dim=-1) - diag_x
kt_yy_sums = k_yy.sum(dim=-1) - diag_y
k_xy_sums = k_xy.sum(dim=0)
kt_xx_sum = kt_xx_sums.sum()
kt_yy_sum = kt_yy_sums.sum()
k_xy_sum = k_xy_sums.sum()
value = (kt_xx_sum + kt_yy_sum) / (m * (m - 1))
value -= 2 * k_xy_sum / (m**2)
return value
def poly_kernel(f1: Tensor, f2: Tensor, degree: int = 3, gamma: Optional[float] = None, coef: float = 1.0) -> Tensor:
"""Adapted from `KID Score`_."""
if gamma is None:
gamma = 1.0 / f1.shape[1]
return (f1 @ f2.T * gamma + coef) ** degree
def poly_mmd(
f_real: Tensor, f_fake: Tensor, degree: int = 3, gamma: Optional[float] = None, coef: float = 1.0
) -> Tensor:
"""Adapted from `KID Score`_."""
k_11 = poly_kernel(f_real, f_real, degree, gamma, coef)
k_22 = poly_kernel(f_fake, f_fake, degree, gamma, coef)
k_12 = poly_kernel(f_real, f_fake, degree, gamma, coef)
return maximum_mean_discrepancy(k_11, k_12, k_22)
class KernelInceptionDistance(Metric):
r"""Calculate Kernel Inception Distance (KID) which is used to access the quality of generated images.
.. math::
KID = MMD(f_{real}, f_{fake})^2
where :math:`MMD` is the maximum mean discrepancy and :math:`I_{real}, I_{fake}` are extracted features
from real and fake images, see `kid ref1`_ for more details. In particular, calculating the MMD requires the
evaluation of a polynomial kernel function :math:`k`
.. math::
k(x,y) = (\gamma * x^T y + coef)^{degree}
which controls the distance between two features. In practise the MMD is calculated over a number of
subsets to be able to both get the mean and standard deviation of KID.
Using the default feature extraction (Inception v3 using the original weights from `kid ref2`_), the input is
expected to be mini-batches of 3-channel RGB images of shape ``(3xHxW)``. If argument ``normalize``
is ``True`` images are expected to be dtype ``float`` and have values in the ``[0,1]`` range, else if
``normalize`` is set to ``False`` images are expected to have dtype ``uint8`` and take values in the ``[0, 255]``
range. All images will be resized to 299 x 299 which is the size of the original training data. The boolian
flag ``real`` determines if the images should update the statistics of the real distribution or the
fake distribution.
Using custom feature extractor is also possible. One can give a torch.nn.Module as `feature` argument. This
custom feature extractor is expected to have output shape of ``(1, num_features)`` This would change the
used feature extractor from default (Inception v3) to the given network. ``normalize`` argument won't have any
effect and update method expects to have the tensor given to `imgs` argument to be in the correct shape and
type that is compatible to the custom feature extractor.
.. hint::
Using this metric with the default feature extractor requires that ``torch-fidelity``
is installed. Either install as ``pip install torchmetrics[image]`` or
``pip install torch-fidelity``
As input to ``forward`` and ``update`` the metric accepts the following input
- ``imgs`` (:class:`~torch.Tensor`): tensor with images feed to the feature extractor of shape ``(N,C,H,W)``
- ``real`` (`bool`): bool indicating if ``imgs`` belong to the real or the fake distribution
As output of `forward` and `compute` the metric returns the following output
- ``kid_mean`` (:class:`~torch.Tensor`): float scalar tensor with mean value over subsets
- ``kid_std`` (:class:`~torch.Tensor`): float scalar tensor with standard deviation value over subsets
Args:
feature: Either an str, integer or ``nn.Module``:
- an str or integer will indicate the inceptionv3 feature layer to choose. Can be one of the following:
'logits_unbiased', 64, 192, 768, 2048
- an ``nn.Module`` for using a custom feature extractor. Expects that its forward method returns
an ``(N,d)`` matrix where ``N`` is the batch size and ``d`` is the feature size.
subsets: Number of subsets to calculate the mean and standard deviation scores over
subset_size: Number of randomly picked samples in each subset
degree: Degree of the polynomial kernel function
gamma: Scale-length of polynomial kernel. If set to ``None`` will be automatically set to the feature size
coef: Bias term in the polynomial kernel.
reset_real_features: Whether to also reset the real features. Since in many cases the real dataset does not
change, the features can cached them to avoid recomputing them which is costly. Set this to ``False`` if
your dataset does not change.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``feature`` is set to an ``int`` (default settings) and ``torch-fidelity`` is not installed
ValueError:
If ``feature`` is set to an ``int`` not in ``(64, 192, 768, 2048)``
ValueError:
If ``subsets`` is not an integer larger than 0
ValueError:
If ``subset_size`` is not an integer larger than 0
ValueError:
If ``degree`` is not an integer larger than 0
ValueError:
If ``gamma`` is neither ``None`` or a float larger than 0
ValueError:
If ``coef`` is not an float larger than 0
ValueError:
If ``reset_real_features`` is not an ``bool``
Example:
>>> from torch import randint
>>> from torchmetrics.image.kid import KernelInceptionDistance
>>> kid = KernelInceptionDistance(subset_size=50)
>>> # generate two slightly overlapping image intensity distributions
>>> imgs_dist1 = randint(0, 200, (100, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = randint(100, 255, (100, 3, 299, 299), dtype=torch.uint8)
>>> kid.update(imgs_dist1, real=True)
>>> kid.update(imgs_dist2, real=False)
>>> kid.compute()
(tensor(0.0312), tensor(0.0025))
"""
higher_is_better: bool = False
is_differentiable: bool = False
full_state_update: bool = False
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
real_features: List[Tensor]
fake_features: List[Tensor]
inception: Module
feature_network: str = "inception"
def __init__(
self,
feature: Union[str, int, Module] = 2048,
subsets: int = 100,
subset_size: int = 1000,
degree: int = 3,
gamma: Optional[float] = None,
coef: float = 1.0,
reset_real_features: bool = True,
normalize: bool = False,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
rank_zero_warn(
"Metric `Kernel Inception Distance` will save all extracted features in buffer."
" For large datasets this may lead to large memory footprint.",
UserWarning,
)
self.used_custom_model = False
if isinstance(feature, (str, int)):
if not _TORCH_FIDELITY_AVAILABLE:
raise ModuleNotFoundError(
"Kernel Inception Distance metric requires that `Torch-fidelity` is installed."
" Either install as `pip install torchmetrics[image]` or `pip install torch-fidelity`."
)
valid_int_input = ("logits_unbiased", 64, 192, 768, 2048)
if feature not in valid_int_input:
raise ValueError(
f"Integer input to argument `feature` must be one of {valid_int_input}, but got {feature}."
)
self.inception: Module = NoTrainInceptionV3(name="inception-v3-compat", features_list=[str(feature)])
elif isinstance(feature, Module):
self.inception = feature
self.used_custom_model = True
else:
raise TypeError("Got unknown input to argument `feature`")
if not (isinstance(subsets, int) and subsets > 0):
raise ValueError("Argument `subsets` expected to be integer larger than 0")
self.subsets = subsets
if not (isinstance(subset_size, int) and subset_size > 0):
raise ValueError("Argument `subset_size` expected to be integer larger than 0")
self.subset_size = subset_size
if not (isinstance(degree, int) and degree > 0):
raise ValueError("Argument `degree` expected to be integer larger than 0")
self.degree = degree
if gamma is not None and not (isinstance(gamma, float) and gamma > 0):
raise ValueError("Argument `gamma` expected to be `None` or float larger than 0")
self.gamma = gamma
if not (isinstance(coef, float) and coef > 0):
raise ValueError("Argument `coef` expected to be float larger than 0")
self.coef = coef
if not isinstance(reset_real_features, bool):
raise ValueError("Argument `reset_real_features` expected to be a bool")
self.reset_real_features = reset_real_features
if not isinstance(normalize, bool):
raise ValueError("Argument `normalize` expected to be a bool")
self.normalize = normalize
# states for extracted features
self.add_state("real_features", [], dist_reduce_fx=None)
self.add_state("fake_features", [], dist_reduce_fx=None)
def update(self, imgs: Tensor, real: bool) -> None:
"""Update the state with extracted features.
Args:
imgs: Input img tensors to evaluate. If used custom feature extractor please
make sure dtype and size is correct for the model.
real: Whether given image is real or fake.
"""
imgs = (imgs * 255).byte() if self.normalize and (not self.used_custom_model) else imgs
features = self.inception(imgs)
if real:
self.real_features.append(features)
else:
self.fake_features.append(features)
def compute(self) -> tuple[Tensor, Tensor]:
"""Calculate KID score based on accumulated extracted features from the two distributions.
Implementation inspired by `Fid Score`_
Returns:
kid_mean (:class:`~torch.Tensor`): float scalar tensor with mean value over subsets
kid_std (:class:`~torch.Tensor`): float scalar tensor with standard deviation value over subsets
"""
real_features = dim_zero_cat(self.real_features)
fake_features = dim_zero_cat(self.fake_features)
n_samples_real = real_features.shape[0]
if n_samples_real < self.subset_size:
raise ValueError("Argument `subset_size` should be smaller than the number of samples")
n_samples_fake = fake_features.shape[0]
if n_samples_fake < self.subset_size:
raise ValueError("Argument `subset_size` should be smaller than the number of samples")
kid_scores_ = []
for _ in range(self.subsets):
perm = torch.randperm(n_samples_real)
f_real = real_features[perm[: self.subset_size]]
perm = torch.randperm(n_samples_fake)
f_fake = fake_features[perm[: self.subset_size]]
o = poly_mmd(f_real, f_fake, self.degree, self.gamma, self.coef)
kid_scores_.append(o)
kid_scores = torch.stack(kid_scores_)
return kid_scores.mean(), kid_scores.std(unbiased=False)
def reset(self) -> None:
"""Reset metric states."""
if not self.reset_real_features:
# remove temporarily to avoid resetting
value = self._defaults.pop("real_features")
super().reset()
self._defaults["real_features"] = value
else:
super().reset()
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image.kid import KernelInceptionDistance
>>> imgs_dist1 = torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = torch.randint(100, 255, (30, 3, 299, 299), dtype=torch.uint8)
>>> metric = KernelInceptionDistance(subsets=3, subset_size=20)
>>> metric.update(imgs_dist1, real=True)
>>> metric.update(imgs_dist2, real=False)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image.kid import KernelInceptionDistance
>>> imgs_dist1 = lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = lambda: torch.randint(100, 255, (30, 3, 299, 299), dtype=torch.uint8)
>>> metric = KernelInceptionDistance(subsets=3, subset_size=20)
>>> values = [ ]
>>> for _ in range(3):
... metric.update(imgs_dist1(), real=True)
... metric.update(imgs_dist2(), real=False)
... values.append(metric.compute()[0])
... metric.reset()
>>> fig_, ax_ = metric.plot(values)
"""
val = val or self.compute()[0] # by default we select the mean to plot
return self._plot(val, ax)
|