File size: 23,280 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# referenced from
# Library Name: torchtext
# Authors: torchtext authors
# Date: 2021-11-30
# Link:
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Copyright 2020 Memsource
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from collections.abc import Iterator, Sequence
from functools import lru_cache
from typing import List, Optional, Union
from torch import Tensor, tensor
from torchmetrics.functional.text.helper import (
_flip_trace,
_LevenshteinEditDistance,
_trace_to_alignment,
_validate_inputs,
)
# Tercom-inspired limits
_MAX_SHIFT_SIZE = 10
_MAX_SHIFT_DIST = 50
# Sacrebleu-inspired limits
_MAX_SHIFT_CANDIDATES = 1000
class _TercomTokenizer:
"""Re-implementation of Tercom Tokenizer in Python 3.
See src/ter/core/Normalizer.java in https://github.com/jhclark/tercom Note that Python doesn't support named Unicode
blocks so the mapping for relevant blocks was taken from here: https://unicode-table.com/en/blocks/
This implementation follows the implementation from
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/tokenizers/tokenizer_ter.py.
"""
_ASIAN_PUNCTUATION = r"([\u3001\u3002\u3008-\u3011\u3014-\u301f\uff61-\uff65\u30fb])"
_FULL_WIDTH_PUNCTUATION = r"([\uff0e\uff0c\uff1f\uff1a\uff1b\uff01\uff02\uff08\uff09])"
def __init__(
self,
normalize: bool = False,
no_punctuation: bool = False,
lowercase: bool = True,
asian_support: bool = False,
) -> None:
"""Initialize the tokenizer.
Args:
normalize: An indication whether a general tokenization to be applied.
no_punctuation: An indication whteher a punctuation to be removed from the sentences.
lowercase: An indication whether to enable case-insensitivity.
asian_support: An indication whether asian characters to be processed.
"""
self.normalize = normalize
self.no_punctuation = no_punctuation
self.lowercase = lowercase
self.asian_support = asian_support
@lru_cache(maxsize=2**16) # noqa: B019
def __call__(self, sentence: str) -> str:
"""Apply a different tokenization techniques according.
Args:
sentence: An input sentence to pre-process and tokenize.
Return:
A tokenized and pre-processed sentence.
"""
if not sentence:
return ""
if self.lowercase:
sentence = sentence.lower()
if self.normalize:
sentence = self._normalize_general_and_western(sentence)
if self.asian_support:
sentence = self._normalize_asian(sentence)
if self.no_punctuation:
sentence = self._remove_punct(sentence)
if self.asian_support:
sentence = self._remove_asian_punct(sentence)
# Strip extra whitespaces
return " ".join(sentence.split())
@staticmethod
def _normalize_general_and_western(sentence: str) -> str:
"""Apply a language-independent (general) tokenization."""
sentence = f" {sentence} "
rules = [
(r"\n-", ""),
# join lines
(r"\n", " "),
# handle XML escaped symbols
(r""", '"'),
(r"&", "&"),
(r"<", "<"),
(r">", ">"),
# tokenize punctuation
(r"([{-~[-` -&(-+:-@/])", r" \1 "),
# handle possessive
(r"'s ", r" 's "),
(r"'s$", r" 's"),
# tokenize period and comma unless preceded by a digit
(r"([^0-9])([\.,])", r"\1 \2 "),
# tokenize period and comma unless followed by a digit
(r"([\.,])([^0-9])", r" \1 \2"),
# tokenize dash when preceded by a digit
(r"([0-9])(-)", r"\1 \2 "),
]
for pattern, replacement in rules:
sentence = re.sub(pattern, replacement, sentence)
return sentence
@classmethod
def _normalize_asian(cls: type["_TercomTokenizer"], sentence: str) -> str:
"""Split Chinese chars and Japanese kanji down to character level."""
# 4E00β9FFF CJK Unified Ideographs
# 3400β4DBF CJK Unified Ideographs Extension A
sentence = re.sub(r"([\u4e00-\u9fff\u3400-\u4dbf])", r" \1 ", sentence)
# 31C0β31EF CJK Strokes
# 2E80β2EFF CJK Radicals Supplement
sentence = re.sub(r"([\u31c0-\u31ef\u2e80-\u2eff])", r" \1 ", sentence)
# 3300β33FF CJK Compatibility
# F900βFAFF CJK Compatibility Ideographs
# FE30βFE4F CJK Compatibility Forms
sentence = re.sub(r"([\u3300-\u33ff\uf900-\ufaff\ufe30-\ufe4f])", r" \1 ", sentence)
# 3200β32FF Enclosed CJK Letters and Months
sentence = re.sub(r"([\u3200-\u3f22])", r" \1 ", sentence)
# Split Hiragana, Katakana, and KatakanaPhoneticExtensions
# only when adjacent to something else
# 3040β309F Hiragana
# 30A0β30FF Katakana
# 31F0β31FF Katakana Phonetic Extensions
sentence = re.sub(r"(^|^[\u3040-\u309f])([\u3040-\u309f]+)(?=$|^[\u3040-\u309f])", r"\1 \2 ", sentence)
sentence = re.sub(r"(^|^[\u30a0-\u30ff])([\u30a0-\u30ff]+)(?=$|^[\u30a0-\u30ff])", r"\1 \2 ", sentence)
sentence = re.sub(r"(^|^[\u31f0-\u31ff])([\u31f0-\u31ff]+)(?=$|^[\u31f0-\u31ff])", r"\1 \2 ", sentence)
sentence = re.sub(cls._ASIAN_PUNCTUATION, r" \1 ", sentence)
return re.sub(cls._FULL_WIDTH_PUNCTUATION, r" \1 ", sentence)
@staticmethod
def _remove_punct(sentence: str) -> str:
"""Remove punctuation from an input sentence string."""
return re.sub(r"[\.,\?:;!\"\(\)]", "", sentence)
@classmethod
def _remove_asian_punct(cls: type["_TercomTokenizer"], sentence: str) -> str:
"""Remove asian punctuation from an input sentence string."""
sentence = re.sub(cls._ASIAN_PUNCTUATION, r"", sentence)
return re.sub(cls._FULL_WIDTH_PUNCTUATION, r"", sentence)
def _preprocess_sentence(sentence: str, tokenizer: _TercomTokenizer) -> str:
"""Given a sentence, apply tokenization.
Args:
sentence: The input sentence string.
tokenizer: An instance of ``_TercomTokenizer`` handling a sentence tokenization.
Return:
The pre-processed output sentence string.
"""
return tokenizer(sentence.rstrip())
def _find_shifted_pairs(pred_words: list[str], target_words: list[str]) -> Iterator[tuple[int, int, int]]:
"""Find matching word sub-sequences in two lists of words. Ignores sub- sequences starting at the same position.
Args:
pred_words: A list of a tokenized hypothesis sentence.
target_words: A list of a tokenized reference sentence.
Return:
Yields tuples of ``target_start, pred_start, length`` such that:
``target_words[target_start : target_start + length] == pred_words[pred_start : pred_start + length]``
pred_start:
A list of hypothesis start indices.
target_start:
A list of reference start indices.
length:
A length of a word span to be considered.
"""
for pred_start in range(len(pred_words)):
for target_start in range(len(target_words)):
# this is slightly different from what tercom does but this should
# really only kick in in degenerate cases
if abs(target_start - pred_start) > _MAX_SHIFT_DIST:
continue
for length in range(1, _MAX_SHIFT_SIZE):
# Check if hypothesis and reference are equal so far
if pred_words[pred_start + length - 1] != target_words[target_start + length - 1]:
break
yield pred_start, target_start, length
# Stop processing once a sequence is consumed.
_hyp = len(pred_words) == pred_start + length
_ref = len(target_words) == target_start + length
if _hyp or _ref:
break
def _handle_corner_cases_during_shifting(
alignments: dict[int, int],
pred_errors: list[int],
target_errors: list[int],
pred_start: int,
target_start: int,
length: int,
) -> bool:
"""Return ``True`` if any of corner cases has been met. Otherwise, ``False`` is returned.
Args:
alignments: A dictionary mapping aligned positions between a reference and a hypothesis.
pred_errors: A list of error positions in a hypothesis.
target_errors: A list of error positions in a reference.
pred_start: A hypothesis start index.
target_start: A reference start index.
length: A length of a word span to be considered.
Return:
An indication whether any of conrner cases has been met.
"""
# don't do the shift unless both the hypothesis was wrong and the
# reference doesn't match hypothesis at the target position
if sum(pred_errors[pred_start : pred_start + length]) == 0:
return True
if sum(target_errors[target_start : target_start + length]) == 0:
return True
# don't try to shift within the subsequence
return pred_start <= alignments[target_start] < pred_start + length
def _perform_shift(words: list[str], start: int, length: int, target: int) -> list[str]:
"""Perform a shift in ``words`` from ``start`` to ``target``.
Args:
words: A words to shift.
start: An index where to start shifting from.
length: A number of how many words to be considered.
target: An index where to end shifting.
Return:
A list of shifted words.
"""
def _shift_word_before_previous_position(words: list[str], start: int, target: int, length: int) -> list[str]:
return words[:target] + words[start : start + length] + words[target:start] + words[start + length :]
def _shift_word_after_previous_position(words: list[str], start: int, target: int, length: int) -> list[str]:
return words[:start] + words[start + length : target] + words[start : start + length] + words[target:]
def _shift_word_within_shifted_string(words: list[str], start: int, target: int, length: int) -> list[str]:
shifted_words = words[:start]
shifted_words += words[start + length : length + target]
shifted_words += words[start : start + length]
shifted_words += words[length + target :]
return shifted_words
if target < start:
return _shift_word_before_previous_position(words, start, target, length)
if target > start + length:
return _shift_word_after_previous_position(words, start, target, length)
return _shift_word_within_shifted_string(words, start, target, length)
def _shift_words(
pred_words: list[str],
target_words: list[str],
cached_edit_distance: _LevenshteinEditDistance,
checked_candidates: int,
) -> tuple[int, list[str], int]:
"""Attempt to shift words to match a hypothesis with a reference.
It returns the lowest number of required edits between a hypothesis and a provided reference, a list of shifted
words and number of checked candidates. Note that the filtering of possible shifts and shift selection are heavily
based on somewhat arbitrary heuristics. The code here follows as closely as possible the logic in Tercom, not
always justifying the particular design choices.
The paragraph copied from https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/lib_ter.py.
Args:
pred_words: A list of tokenized hypothesis sentence.
target_words: A list of lists of tokenized reference sentences.
cached_edit_distance: A pre-computed edit distance between a hypothesis and a reference.
checked_candidates: A number of checked hypothesis candidates to match a provided reference.
Return:
best_score:
The best (lowest) number of required edits to match hypothesis and reference sentences.
shifted_words:
A list of shifted words in hypothesis sentences.
checked_candidates:
A number of checked hypothesis candidates to match a provided reference.
"""
edit_distance, inverted_trace = cached_edit_distance(pred_words)
trace = _flip_trace(inverted_trace)
alignments, target_errors, pred_errors = _trace_to_alignment(trace)
best: Optional[tuple[int, int, int, int, list[str]]] = None
for pred_start, target_start, length in _find_shifted_pairs(pred_words, target_words):
if _handle_corner_cases_during_shifting(
alignments, pred_errors, target_errors, pred_start, target_start, length
):
continue
prev_idx = -1
for offset in range(-1, length):
if target_start + offset == -1:
idx = 0
elif target_start + offset in alignments:
idx = alignments[target_start + offset] + 1
# offset is out of bounds => aims past reference
else:
break
# Skip idx if already tried
if idx == prev_idx:
continue
prev_idx = idx
shifted_words = _perform_shift(pred_words, pred_start, length, idx)
# Elements of the tuple are designed to replicate Tercom ranking of shifts:
candidate = (
edit_distance - cached_edit_distance(shifted_words)[0], # highest score first
length, # then, longest match first
-pred_start, # then, earliest match first
-idx, # then, earliest target position first
shifted_words,
)
checked_candidates += 1
if not best or candidate > best:
best = candidate
if checked_candidates >= _MAX_SHIFT_CANDIDATES:
break
if not best:
return 0, pred_words, checked_candidates
best_score, _, _, _, shifted_words = best
return best_score, shifted_words, checked_candidates
def _translation_edit_rate(pred_words: list[str], target_words: list[str]) -> Tensor:
"""Compute translation edit rate between hypothesis and reference sentences.
Args:
pred_words: A list of a tokenized hypothesis sentence.
target_words: A list of lists of tokenized reference sentences.
Return:
A number of required edits to match hypothesis and reference sentences.
"""
if len(target_words) == 0:
return tensor(0.0)
cached_edit_distance = _LevenshteinEditDistance(target_words)
num_shifts = 0
checked_candidates = 0
input_words = pred_words
while True:
# do shifts until they stop reducing the edit distance
delta, new_input_words, checked_candidates = _shift_words(
input_words, target_words, cached_edit_distance, checked_candidates
)
if checked_candidates >= _MAX_SHIFT_CANDIDATES or delta <= 0:
break
num_shifts += 1
input_words = new_input_words
edit_distance, _ = cached_edit_distance(input_words)
total_edits = num_shifts + edit_distance
return tensor(total_edits)
def _compute_sentence_statistics(pred_words: list[str], target_words: list[list[str]]) -> tuple[Tensor, Tensor]:
"""Compute sentence TER statistics between hypothesis and provided references.
Args:
pred_words: A list of tokenized hypothesis sentence.
target_words: A list of lists of tokenized reference sentences.
Return:
best_num_edits:
The best (lowest) number of required edits to match hypothesis and reference sentences.
avg_tgt_len:
Average length of tokenized reference sentences.
"""
tgt_lengths = tensor(0.0)
best_num_edits = tensor(2e16)
for tgt_words in target_words:
num_edits = _translation_edit_rate(tgt_words, pred_words)
tgt_lengths += len(tgt_words)
if num_edits < best_num_edits:
best_num_edits = num_edits
avg_tgt_len = tgt_lengths / len(target_words)
return best_num_edits, avg_tgt_len
def _compute_ter_score_from_statistics(num_edits: Tensor, tgt_length: Tensor) -> Tensor:
"""Compute TER score based on pre-computed a number of edits and an average reference length.
Args:
num_edits: A number of required edits to match hypothesis and reference sentences.
tgt_length: An average length of reference sentences.
Return:
A corpus-level TER score or 1 if reference_length == 0.
"""
if tgt_length > 0 and num_edits > 0:
return num_edits / tgt_length
if tgt_length == 0 and num_edits > 0:
return tensor(1.0)
return tensor(0.0)
def _ter_update(
preds: Union[str, Sequence[str]],
target: Sequence[Union[str, Sequence[str]]],
tokenizer: _TercomTokenizer,
total_num_edits: Tensor,
total_tgt_length: Tensor,
sentence_ter: Optional[List[Tensor]] = None,
) -> tuple[Tensor, Tensor, Optional[List[Tensor]]]:
"""Update TER statistics.
Args:
preds: An iterable of hypothesis corpus.
target: An iterable of iterables of reference corpus.
tokenizer: An instance of ``_TercomTokenizer`` handling a sentence tokenization.
total_num_edits: A total number of required edits to match hypothesis and reference sentences.
total_tgt_length: A total average length of reference sentences.
sentence_ter: A list of sentence-level TER values
Return:
total_num_edits:
A total number of required edits to match hypothesis and reference sentences.
total_tgt_length:
A total average length of reference sentences.
sentence_ter:
(Optionally) A list of sentence-level TER.
Raises:
ValueError:
If length of ``preds`` and ``target`` differs.
"""
target, preds = _validate_inputs(target, preds)
for pred, tgt in zip(preds, target):
tgt_words_: list[list[str]] = [_preprocess_sentence(_tgt, tokenizer).split() for _tgt in tgt]
pred_words_: list[str] = _preprocess_sentence(pred, tokenizer).split()
num_edits, tgt_length = _compute_sentence_statistics(pred_words_, tgt_words_)
total_num_edits += num_edits
total_tgt_length += tgt_length
if sentence_ter is not None:
sentence_ter.append(_compute_ter_score_from_statistics(num_edits, tgt_length).unsqueeze(0))
return total_num_edits, total_tgt_length, sentence_ter
def _ter_compute(total_num_edits: Tensor, total_tgt_length: Tensor) -> Tensor:
"""Compute TER based on pre-computed a total number of edits and a total average reference length.
Args:
total_num_edits: A total number of required edits to match hypothesis and reference sentences.
total_tgt_length: A total average length of reference sentences.
Return:
A corpus-level TER score.
"""
return _compute_ter_score_from_statistics(total_num_edits, total_tgt_length)
def translation_edit_rate(
preds: Union[str, Sequence[str]],
target: Sequence[Union[str, Sequence[str]]],
normalize: bool = False,
no_punctuation: bool = False,
lowercase: bool = True,
asian_support: bool = False,
return_sentence_level_score: bool = False,
) -> Union[Tensor, tuple[Tensor, List[Tensor]]]:
"""Calculate Translation edit rate (`TER`_) of machine translated text with one or more references.
This implementation follows the implementations from
https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/metrics/ter.py. The `sacrebleu` implementation is a
near-exact reimplementation of the Tercom algorithm, produces identical results on all "sane" outputs.
Args:
preds: An iterable of hypothesis corpus.
target: An iterable of iterables of reference corpus.
normalize: An indication whether a general tokenization to be applied.
no_punctuation: An indication whteher a punctuation to be removed from the sentences.
lowercase: An indication whether to enable case-insensitivity.
asian_support: An indication whether asian characters to be processed.
return_sentence_level_score: An indication whether a sentence-level TER to be returned.
Return:
A corpus-level translation edit rate (TER).
(Optionally) A list of sentence-level translation_edit_rate (TER) if `return_sentence_level_score=True`.
Example:
>>> preds = ['the cat is on the mat']
>>> target = [['there is a cat on the mat', 'a cat is on the mat']]
>>> translation_edit_rate(preds, target)
tensor(0.1538)
References:
[1] A Study of Translation Edit Rate with Targeted Human Annotation
by Mathew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla and John Makhoul `TER`_
"""
if not isinstance(normalize, bool):
raise ValueError(f"Expected argument `normalize` to be of type boolean but got {normalize}.")
if not isinstance(no_punctuation, bool):
raise ValueError(f"Expected argument `no_punctuation` to be of type boolean but got {no_punctuation}.")
if not isinstance(lowercase, bool):
raise ValueError(f"Expected argument `lowercase` to be of type boolean but got {lowercase}.")
if not isinstance(asian_support, bool):
raise ValueError(f"Expected argument `asian_support` to be of type boolean but got {asian_support}.")
tokenizer: _TercomTokenizer = _TercomTokenizer(normalize, no_punctuation, lowercase, asian_support)
total_num_edits = tensor(0.0)
total_tgt_length = tensor(0.0)
sentence_ter: Optional[List[Tensor]] = [] if return_sentence_level_score else None
total_num_edits, total_tgt_length, sentence_ter = _ter_update(
preds,
target,
tokenizer,
total_num_edits,
total_tgt_length,
sentence_ter,
)
ter_score = _ter_compute(total_num_edits, total_tgt_length)
if sentence_ter:
return ter_score, sentence_ter
return ter_score
|