File size: 7,598 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# referenced from
# Library Name: torchtext
# Authors: torchtext authors and @sluks
# Date: 2020-07-18
# Link: https://pytorch.org/text/_modules/torchtext/data/metrics.html#bleu_score
from collections import Counter
from collections.abc import Sequence
from typing import Callable, Optional, Union

import torch
from torch import Tensor, tensor


def _count_ngram(ngram_input_list: Sequence[str], n_gram: int) -> Counter:
    """Count how many times each word appears in a given text with ngram.

    Args:
        ngram_input_list: A list of translated text or reference texts
        n_gram: gram value ranged 1 to 4

    Return:
        ngram_counter: a collections.Counter object of ngram

    """
    ngram_counter: Counter = Counter()

    for i in range(1, n_gram + 1):
        for j in range(len(ngram_input_list) - i + 1):
            ngram_key = tuple(ngram_input_list[j : (i + j)])
            ngram_counter[ngram_key] += 1

    return ngram_counter


def _tokenize_fn(sentence: str) -> Sequence[str]:
    """Tokenizes sentence into list of words.

    Args:
        sentence: A sentence separated by white space.

    Return:
        List of words

    """
    return sentence.split()


def _bleu_score_update(
    preds: Sequence[str],
    target: Sequence[Sequence[str]],
    numerator: Tensor,
    denominator: Tensor,
    preds_len: Tensor,
    target_len: Tensor,
    n_gram: int = 4,
    tokenizer: Callable[[str], Sequence[str]] = _tokenize_fn,
) -> tuple[Tensor, Tensor]:
    """Update and returns variables required to compute the BLEU score.

    Args:
        preds: An iterable of machine translated corpus
        target: An iterable of iterables of reference corpus
        numerator: Numerator of precision score (true positives)
        denominator: Denominator of precision score (true positives + false positives)
        preds_len: count of words in a candidate prediction
        target_len: count of words in a reference translation
        target: count of words in a reference translation
        n_gram: gram value ranged 1 to 4
        tokenizer: A function that turns sentence into list of words

    """
    target_: Sequence[Sequence[Sequence[str]]] = [[tokenizer(line) if line else [] for line in t] for t in target]
    preds_: Sequence[Sequence[str]] = [tokenizer(line) if line else [] for line in preds]

    for pred, targets in zip(preds_, target_):
        preds_len += len(pred)
        target_len_list = [len(tgt) for tgt in targets]
        target_len_diff = [abs(len(pred) - x) for x in target_len_list]
        target_len += target_len_list[target_len_diff.index(min(target_len_diff))]
        preds_counter: Counter = _count_ngram(pred, n_gram)
        target_counter: Counter = Counter()

        for tgt in targets:
            target_counter |= _count_ngram(tgt, n_gram)

        ngram_counter_clip = preds_counter & target_counter

        for counter_clip in ngram_counter_clip:
            numerator[len(counter_clip) - 1] += ngram_counter_clip[counter_clip]

        for counter in preds_counter:
            denominator[len(counter) - 1] += preds_counter[counter]

    return preds_len, target_len


def _bleu_score_compute(
    preds_len: Tensor,
    target_len: Tensor,
    numerator: Tensor,
    denominator: Tensor,
    n_gram: int,
    weights: Sequence[float],
    smooth: bool,
) -> Tensor:
    """Compute the BLEU score.

    Args:
        preds_len: count of words in a candidate translation
        target_len: count of words in a reference translation
        numerator: Numerator of precision score (true positives)
        denominator: Denominator of precision score (true positives + false positives)
        n_gram: gram value ranged 1 to 4
        weights: Weights used for unigrams, bigrams, etc. to calculate BLEU score.
        smooth: Whether to apply smoothing

    """
    device = numerator.device
    if min(numerator) == 0.0:
        return tensor(0.0, device=device)

    if smooth:
        precision_scores = torch.div(
            torch.add(numerator, torch.ones(n_gram, device=device)),
            torch.add(denominator, torch.ones(n_gram, device=device)),
        )
        precision_scores[0] = numerator[0] / denominator[0]
    else:
        precision_scores = numerator / denominator

    log_precision_scores = tensor(weights, device=device) * torch.log(precision_scores)
    geometric_mean = torch.exp(torch.sum(log_precision_scores))
    brevity_penalty = tensor(1.0, device=device) if preds_len > target_len else torch.exp(1 - (target_len / preds_len))
    return brevity_penalty * geometric_mean


def bleu_score(
    preds: Union[str, Sequence[str]],
    target: Sequence[Union[str, Sequence[str]]],
    n_gram: int = 4,
    smooth: bool = False,
    weights: Optional[Sequence[float]] = None,
) -> Tensor:
    """Calculate `BLEU score`_ of machine translated text with one or more references.

    Args:
        preds: An iterable of machine translated corpus
        target: An iterable of iterables of reference corpus
        n_gram: Gram value ranged from 1 to 4
        smooth: Whether to apply smoothing - see [2]
        weights:
            Weights used for unigrams, bigrams, etc. to calculate BLEU score.
            If not provided, uniform weights are used.

    Return:
        Tensor with BLEU Score

    Raises:
        ValueError: If ``preds`` and ``target`` corpus have different lengths.
        ValueError: If a length of a list of weights is not ``None`` and not equal to ``n_gram``.

    Example:
        >>> from torchmetrics.functional.text import bleu_score
        >>> preds = ['the cat is on the mat']
        >>> target = [['there is a cat on the mat', 'a cat is on the mat']]
        >>> bleu_score(preds, target)
        tensor(0.7598)

    References:
        [1] BLEU: a Method for Automatic Evaluation of Machine Translation by Papineni,
        Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu `BLEU`_

        [2] Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence
        and Skip-Bigram Statistics by Chin-Yew Lin and Franz Josef Och `Machine Translation Evolution`_

    """
    preds_ = [preds] if isinstance(preds, str) else preds
    target_ = [[tgt] if isinstance(tgt, str) else tgt for tgt in target]

    if len(preds_) != len(target_):
        raise ValueError(f"Corpus has different size {len(preds_)} != {len(target_)}")

    if weights is not None and len(weights) != n_gram:
        raise ValueError(f"List of weights has different weights than `n_gram`: {len(weights)} != {n_gram}")
    if weights is None:
        weights = [1.0 / n_gram] * n_gram

    numerator = torch.zeros(n_gram)
    denominator = torch.zeros(n_gram)
    preds_len = tensor(0.0)
    target_len = tensor(0.0)

    preds_len, target_len = _bleu_score_update(
        preds_, target_, numerator, denominator, preds_len, target_len, n_gram, _tokenize_fn
    )

    return _bleu_score_compute(preds_len, target_len, numerator, denominator, n_gram, weights, smooth)